
Self-demodulation of elastic waves in a one-dimensional granular chain

V. Tournat,* V. E. Gusev, and B. Castagnède
Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

(Received 1 July 2003; revised manuscript received 25 June 2004; published 10 November 2004)

The self-demodulation process in a nonlinear granular chain of identical beads is studied analytically and
numerically. In such a medium, in accordance with the dispersion relation, longitudinal waves that have a
frequency higher than the so-called cutoff frequency of the chain are evanescent. Here, we study the influence
on the self-demodulation process of the transition from the propagative to the evanescent regime in pump wave
propagation that takes place when the pump frequency increases. An analytical solution in discrete coordinates
is derived for the case of two primary frequencies mixing into a single difference frequency. This solution is
then numerically integrated in order to analyze the demodulation of the acoustic wave packet(i.e., of the
harmonic acoustic wave modulated in a pulse mode). Temporal demodulated profiles can be strongly sensitive
to the regime(propagative or evanescent) of primary wave transport. This model allows us to detect the cutoff
frequency of longitudinal elastic waves in the chain, without receiving the primary waves, but receiving the
low frequency nonlinearly radiated signal. The roles of frequency dependent attenuation, velocity dispersion,
and observation distance are analyzed.
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I. INTRODUCTION

Although the pioneer theoretical results on nonlinear
wave propagation in unidimensional granular chains were
obtained 20 years ago[1,2], there is still continuous activity
in this domain of research[3–8]. Interest in these studies is
supported by the fact that many of the earth’s materials and
of technological materials are granular and can be tested in
real experimental conditions by elastic waves(seismics, un-
derwater acoustics for diagnostics of the sediments, indus-
trial real time monitoring, etc.). Elastic waves have demon-
strated powerful capabilities in the control or in the
evaluation of these granular materials[13]; however, a better
understanding of the characteristic features of wave propaga-
tion in such media is needed, especially when scattering,
dispersion, absorption, or nonlinear effects occur.

As mentioned in[4], the elastic dynamical behavior of
three-dimensional(3D) granular materials represents a com-
plicated problem because it involves a huge number of not
well known parameters related, for instance, to the statistical
distribution of bead shapes, sizes, constitutive materials, and
the contacts between beads, to the geometry of packing, and
to the structure of force chains. These features can lead to
specific effects in the elastic wave propagation such as noise
generation observed in[5], or to a strong sensitivity of sound
to temperature variations[6]. In contrast, a simpler realistic
problem for both experimental and theoretical studies of
elastic wave propagation consists of a 1D chain, made of
identical elastic spherical beads in contact. In a sense, the
application of a 1D periodic system to model elastic wave
propagation in granular materials could seem to be quite ru-
dimentary. However, there is a consensus that the fundamen-
tal results obtained in the 1D geometry might be useful for
the analysis of 3D problems[4,7]. Moreover, both discrete

and nonlinear features that are taken into account in 1D mod-
els represent fundamental problems of interest for the general
study of nonlinear lattices[8,9]. Here the recent progress in
“growth” of regular granular lattices should be mentioned
[10–12]

The propagation in granular assemblages is fundamentally
nonlinear due to the nonlinearity of the interaction between
two adjacent elastic beads, which can be described using the
Hertz law [14,15]. The validity of this model for a chain of
beads has been tested experimentally(see[4] and the refer-
ence therein). One of the first works on the nonlinear effects
in 1D granular chains was the propagation of solitonlike
pulses[1,2]. Since this time, theoretical, numerical, and ex-
perimental studies of soliton collision[16] and backscatter-
ing [17], and of the detection of buried impurities using soli-
tons [18] have been performed. In parallel, other nonlinear
effects were observed(and modeled) in 3D media, like
acoustic wave self-action in geophysics experiments[19], or
harmonics generation and self-demodulation in sand
[20–22].

Also, such fine linear properties for elastic wave propaga-
tion in the longitudinal chain configuration were under active
investigation as velocity dispersion[8], scattering by inho-
mogeneities[17], and shear and Rayleigh wave propagation
[8]. In this case, Rayleigh waves are obtained at very high
frequencies of longitudinal excitation(the wavelength of the
elastic perturbation in the bead’s material is smaller than the
diameter of the bead). At these high frequencies, other acous-
tic modes like whispering or breathing can also manifest
themselves[23]. For lower frequencies, one of the remark-
able predicted and observed features is the transition from
propagative longitudinal modes to evanescent modes when
the frequency of the waves is increased above the so-called
cutoff frequency of the chain[24]. This cutoff frequency
depends on a few identified parameters: the longitudinal
static stress applied to the chain, the size of the beads, and
the elastic properties of the bead material(Young modulus
and Poisson ratio). It is also possible to deduce the cutoff*Electronic address: vincent.tournat@univ-lemans.fr
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frequency from the low frequency sound velocity(which de-
pends on the previous parameters) and the bead radius. As a
consequence, the cutoff frequency is a source of information
on the properties of a granular chain.

One of the experimental difficulties with evanescent
waves is that they are attenuated at a distance of several bead
diameters, and thus it is often difficult to detect them. We
propose a method to obtain information related to the high
frequency wave transport modes(propagative or evanes-
cent), using the nonlinear self-demodulation effect produced
by a so-called parametric emitting antenna. The first studies
of this nonlinear process were performed 50 years ago in the
field of underwater acoustics(see [25] and the references
therein). Powerful amplitude-modulated high frequency(HF)
waves(called primary or pump waves) are radiated first in
the nonlinear medium of propagation. Due to the quadratic
elastic nonlinearity of the medium, different spectral compo-
nents of the emitted signal(for examplev1 andv2) interact,
to give the sum componentsv1+v2,2v1, and 2v2, and also
the difference onev1−v2. The difference frequency compo-
nent has a significantly lower frequency than bothv1 andv2
if uv1−v2u!v1,v2. As the attenuation(from both absorption
and scattering) increases with the frequency, only the low
frequency(LF) componentv1−v2 can propagate over a long
distance. Moreover, the directivity of this LF nonlinearly ra-
diated signal can be even higher than the directivity of the
HF primary waves[25]. Modeling of the parametric antenna
operation in 3D disordered granular media has been recently
reported[27] and applied for the interpretation of the experi-
mental observations[28]. In this case, scattering due to con-
tact disorder as well as velocity dispersion and absorption
have been mainly studied.

For the following analysis, it is important that the differ-
ence frequency wave generated by mixing of two evanescent
pump waves can be propagative and can carry information
on the evanescent modes outside the region of their localiza-
tion.

It should be pointed out that we are going to analyze
weakly nonlinear waves, where the quadratic nonlinearity
provides only a weak perturbation of the linear solution. In
this case, an effect such as nonlinear supratransmission in the
forbidden band gap by means of nonlinear modes[26] is not
expected. However, energy transmission in the chain is pos-
sible even due to weak nonlinear effects if the interaction of
the evanescent modes leads to the excitation of the propaga-
tive modes. In the following, we show that the LF signal,
which might be experimentally transmitted in chains of
beads, is sensitive to the transition from propagative to eva-
nescent modes in the primary wave transport. The transition
manifests itself by a strong decrease in the efficiency of the
self-demodulation process.

Numerical computations are performed for both single
frequency and wideband demodulated signals in order to in-
clude realistic experimental conditions: single frequency sig-
nals can be analyzed through a lock-in amplifier to access
amplitude and phase, and wideband demodulated signals can
be recorded in the temporal domain using an oscilloscope.

The influence of dispersion, absorption, and observation
distance on the demodulated signal are analyzed for single
frequency and wideband demodulated signals.

In Sec. II, the nonlinear equation of motion of the chain is
first derived in the quadratic approximation. Then, using the
dispersion relation in the chain for both propagative and eva-
nescent modes, the solution for the LF wave demodulated
from two pump frequencies is derived.

In Sec. III, the asymptotic analysis of this result is per-
formed in different limiting cases, for propagative pump
waves(strong and weak dispersive regimes), for evanescent
waves, and in particular for pump frequencies in the vicinity
of the cutoff frequency. The behavior of the nonlinear force
and of the demodulated wave in the region of nonlinear in-
teraction is also briefly analyzed.

Section IV presents the numerical treatment and the re-
sults for two kinds of HF pump wave signals, i.e., for two
pump frequencies and for a Gaussian wave packet(a har-
monic wave modulated in amplitude with a Gaussian func-
tion). The influence of dispersion for propagative HF pump
waves on the demodulated wave amplitude and on its tem-
poral profile is studied. Then, results on the influence of the
transition from propagative to evanescent HF pump waves
on the demodulated signal are presented. Finally, comparison
of this transition with the transition from ballistics to diffu-
sion in the HF pump wave propagation is discussed.

II. THEORY

A. Principle of the parametric emitting antenna

Due to the nonlinearity(or anharmonicity) of the lattice,
the presence of an intense monochromatic HF wave at fre-
quencyv creates a mean static nonlinear force. This phe-
nomenon takes place, for instance, in the presence of thermal
phonons, leading to dilatation in solids. When the monochro-
matic HF carrier wave is slowly modulated in amplitude, the
nonlinear force is slowly accordingly modified. As a conse-
quence, a LF wave is nonlinearly generated in the medium at
the frequency of the modulation function.

It is possible to use different amplitude modulation pro-
files. Traditionally, the sinusoidal modulation of an harmonic
carrier wave is described byf1+mcossvmtdgcossvtd, where
m is the modulation index,vm is the modulation frequency,
andv is the carrier frequency. The spectrum of such signal
has three componentsv ,v−vm, andv+vm. Another type of
modulation can be obtained due to the beating phenomenon
between two neighboring high frequenciesv1 andv2. In this
case, the spectrum of the primary signal is composed only of
two frequenciesv1 andv2, and the amplitude modulation of
the total signal is a consequence of the relative phase varia-
tion between individual signals(being alternately in phase
and out of phase).

In a medium with a quadratic elastic nonlinearity in the
stress-strain relationship(corresponding to the cubic term in
the potential energy–strain relationship), the superposition
principle is no longer applicable, and waves at different fre-
quencies can interact. This is commonly denoted as the fre-
quency mixing phenomenon.

For two emitted neighboring HF wavesv1 and
v2 sv1.v2d, the energy conservation principle ensures that
frequenciesv1+v2, 2v1, 2v2, 0, andv1−v2, which is a LF
wave(if uv1−v2u!v1,v2), are generated. As the attenuation
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increases with increasing frequency, only the LF component
can propagate remotely and can be recorded. Thus, the pri-
mary emitted HF signal composed ofv1 and v2 is nonlin-
early self-demodulated into a signal at the frequencyV
=v1−v2.

Another possible regime of LF wave generation by the
so-called parametric antenna[25] is the pulsed mode, where
a finite length HF primary wave packet is emitted first. For
simplicity of analytical development, and also to avoid the
side lobes in the spectra of primary signals, Gaussian modu-
lation functions of the carrier wave are considered in the
following. The dependence of the mechanical displacement
in the primary wave on time and the associated spectrum can
be modeled by

Ustd = A cossv0tde−t2/2tm
2
, s1d

Ũsvd = AtmÎp

2
se−sv + v0d2stm

2 /2d
+ e−sv − v0d2stm

2 /2dd , s2d

wheretm is the characteristic modulation time of the initial
wave packet andv0 the central frequency of this wave
packet. In this case, the frequency mixing takes place be-
tween all the frequency pairs of the Gaussian spectrum. Due
to this, the solutionUV

Gausssn,t ,v0,tmd (wheren is the space
coordinate) for the demodulation of the Gaussian HF wave
packet is related to the solutionUVsn,t ,v0,Vd describing
the difference frequencyV=v1−v2 excitation in the case of
two waves mixing. The following integration should be per-
formed:

UV
Gausssn,t,v0,tmd =E

−`

+`

UVsn,t,v0,Vde−V2tm
2
dV, s3d

where v0=v1 and v0−V=v2 and wheree−V2tm
2

is propor-
tional to the frequency spectrum of the pump intensity enve-
lope. In the analysis section of this paper, the demodulated
displacementUVsn,t ,v0,Vd will be expressed with the help
of a spectral transfer functionGsv0,Vd. Consequently, any
change in theGsv0,Vd dependence onV will result in a
modification of the shape of the demodulated temporal pro-
file UV

Gausssn,t ,v0,tmd.

B. Equation of motion in the quadratic approximation

The considered problem is the elastic wave propagation in
a semi-infinite 1D chain of identical spheres, as illustrated in
Fig. 1. In the following, we will always consider the pro-
cesses at the time scales which are much longer than the
acoustic wave travel time along a bead diameter(i.e., less
than 10−6 s for glass beads of diametera=2 mm). The phe-
nomena under investigation can be considered as quasistatic
for the deformation of an individual bead; however, it does
not imply that the wavelength of the elastic wave in the chain
is large compared to the bead radiusa/2 (because the sound
velocity in the chain is much lower than the sound velocity
in the bead material), and the discrete character of the chain
will be always considered. As the elastic deformations are
concentrated in the neighborhood of the contact location be-

tween two beads, it is possible to model the 1D granular
chain as a chain of pointlike massesm=pa3r /6 (wherer is
the bead material density) interacting by nonlinear springs
with a Hertzian force-displacement law[14,15]

F0 + Fd ~ sud0u + ddd3/2, s4d

whereF0 is the static applied force on the chain,Fd is a small
dynamic superimposed force,d0 is the static deviation of the
interbead distance froma (a characteristic of the unloaded
chain withF0=0, Fd=0) anddd suddu! ud0ud is the perturba-
tion due to the acoustic wave. Considering the caseF0@Fd,
the relation(4) can be expanded in a power series:

F0 + Fd ~ ud0u3/2 +
3

2
ud0u1/2dd +

3

8
ud0u−1/2dd

2 + ¯ . s5d

The first nonlinear term of this expansion containsdd
2, which

is quadratic. This expansion of the force-strain relationship
between two beads can be also derived from a potential
energy–displacement relation for the whole chain or equiva-
lent 1D lattice(Fig. 1):

Ep = Ep0 +
a

2!on

fUsnd − Usn + 1dg2

+
b

3!on

fUsnd − Usn + 1dg3 + ¯ . s6d

Here Usnd denotes the displacement of the mass(or bead)
numbern. The cubic term in Eq.(6) corresponds to the qua-
dratic nonlinearity of Eq.(5), a is the linear elastic constant
of a contact, andb is the nonlinear quadratic parameter of
the same contact. From this nonlinear relation, it is possible
to deduce the following second order nonlinear equation of
motion in discrete coordinates for each mass:

m
]2Usnd

] t2
= Fsnd

= −
] Ep

] Usnd

= afUsn + 1d − 2Usnd + Usn − 1dg

−
b

2
fUsn + 1d − 2Usnd + Usn − 1dg

3fUsn + 1d − Usn − 1dg. s7d

FIG. 1. Problem under consideration.
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The solutions of this nonlinear equation of motion for the
self-demodulation process will be found via the usual suc-
cessive approximation method[25].

C. Dispersion relation for the acoustic waves in the chain

First, we recall the linear properties of such a system, in
particular the dispersion relation. These linear properties of
elastic wave propagation in unidimensional lattices of iden-
tical masses and springs have been extensively studied[24].
The dispersion relation is obtained from the following linear
equation of motion of the chain[the linear part of Eq.(7)]:

m
]2Usnd

] t2
− afUsn + 1d − 2Usnd + Usn − 1dg = 0. s8d

Eigenmodes of the infinite chain are derived in the form

of wavesUsnd=Ãsvdeivt−ikan, where v is the angular fre-

quency,Ãsvd is the spectral amplitude, andk is the complex
wave number. Substituting the last form ofUsnd into Eq.(8),
the following well-known dispersion relation is obtained:

v2 =
4a

m
sin2Ska

2
D . s9d

Introducing the notationvc=2Îa /m for the cutoff frequency,
i.e., the maximum frequency of propagating waves, andkc
=p /a for the maximum(real) wave number of propagating
waves, it is possible to rewrite the relation(9) in the follow-
ing form:

sin2Sp

2

k

kc
D = S v

vc
D2

. s10d

Purely real solutions for the wave numberk exist only if
uvuøvc. In this case, the dispersion relation is

p

2

k

kc
= ± arcsinS v

vc
D , s11d

where the sign “+” corresponds to the waves propagating to
the right(positive direction) and the sign “−” corresponds to
the waves propagating to the left(negative direction). Con-
sidering only the waves propagating to the right, the follow-
ing dispersion relation is obtained:

k =
2

p
kcarcsinS v

vc
D for − vc ø v ø vc. s12d

If uvu.vc, Eq. (10) has no purely real solution. It is nec-
essary to consider the wave numberk of the form k=k8
+ ik9 where k8 and k9 are real. Then, from Eq.(10), it is
possible to derive an expression for the evanescent wave
number of the form

k = kcsgnsvd − i
2

p
kcarcoshS uvu

vc
D for uvu . vc. s13d

Note that Eq.(13) describes the dispersion of the evanescent
modes that are attenuated in the positive direction(i.e., with
increasingn). These are the modes for which the acoustic
waves propagating in the positive direction are transformed

above the critical frequency. The complete description of the
wave dispersion relation of the chain is given by the combi-
nation of Eq.(12) and Eq.(13).

D. Solution for the self-demodulated wave

A parametric antenna emits low frequency signals(de-
modulated signals) due to the nonlinear rectification of pow-
erful amplitude-modulated high frequency waves(primary
waves) that are first radiated in the medium. Thus, there ex-
ists in the region of nonlinear excitation a large difference in
amplitude between primary and demodulated waves. Using
the method of successive approximations, i.e., considering
that in the region of interaction, primary waves are much
higher in amplitude than the nonlinearly demodulated waves,
the equation of the first approximation for the HF primary
waves is equivalent to Eq.(8), with the notationU;Uv to
denote the displacement associated with the powerful pri-
mary waves. To describe the medium excitation by two high
frequency waves we use the following boundary condition
for the mass number 0 located at the boundary of the con-
sidered semi-infinite chain(Fig. 1):

Uvsn = 0,td = RefAv1
s0deiv1t + Av2

s0deiv2tg. s14d

Here Av1
s0d and Av2

s0d are the complex amplitudes of the
waves at frequenciesv1 and v2 at the boundaryn=0. The
solution of Eq.(8) satisfying this boundary condition and the
condition of radiation in the positive direction is

Uvsn,td = RefAv1
s0deiv1t−iksv1dan + Av2

s0deiv2t−iksv2dang,

s15d

whereksvd is the dispersion relation described by Eq.(12)
and Eq.(13).

Due to the beating phenomenon betweenv1 and v2, the
total signal is equivalent to an amplitude-modulated HF sig-
nal.

The demodulated LF displacementUV is found with the
equation of the second order approximation

m
]2UVsnd

] t2
− afUVsn + 1d − 2UVsnd + UVsn − 1dg

= −
b

2
fUvsn + 1d − 2Uvsnd + Uvsn − 1dg

3fUvsn + 1d − Uvsn − 1dg, s16d

where the solution forUv is substituted in the right hand side
of Eq. (7), while the contribution ofUV to the nonlinear
terms is neglected. Retaining only the terms at frequency
V=v1−v2, it is possible to rewrite the right hand side of Eq.
(16) as
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2b ImHAv1
s0dAv2

* s0deiVt−isk1−k2
* danFcosSk1 + k2

*

2
aD

− cosSk1 − k2
*

2
aDGsinSk1 − k2

*

2
aDJ , s17d

wherek2=ksv2d ,k1=ksv1d, andk2
* denotes the complex con-

jugate ofk2. The general solution of Eq.(16) is the sum of
the general solution of the homogeneous equation for waves
of frequencyV propagating in the positive direction and of a
particular solution of the inhomogeneous equation

UVsn,t,v1,v2d = ImfUIVsn,v1,v2deiVtg,

UIVsn,v1,v2d = C1e
−iksVdan + C2e

−iDk an,

C2 =

b Av1
s0dAv2

* s0dFcosSk1 + k2
*

2
aD − cosSk1 − k2

*

2
aDGsinSk1 − k2

*

2
aD

2aFsin2SDk

2
aD −

V2

vc
2G . s18d

HereDk=k2
* −k1, andC1 andC2 are two constants. Assuming the absence of the LF motion at the boundarysn=0d, we get

C1=−C2. The solution for the displacement in the demodulated wave takes the final form

UVsn,t,v1,v2d = Im1bAv1
s0dAv2

* s0dFcosSk1 + k2
*

2
aD − cosSk1 − k2

*

2
aDGsinSk1 − k2

*

2
aD

2aFV2

vc
2 − sin2SDk

2
aDG f1 − eifksVd−DkgangeiVt−iksVdan2 . s19d

III. ANALYSIS

In this section, the theoretical result(19) is analyzed for
several limiting cases, including propagative pump waves
and evanescent pump waves. First, the nonlinear force re-
sponsible for the self-demodulation process is simplified.
This allows us to understand the basic properties of this para-
metric antenna operation. Second, the analysis of the dis-
placement wave demodulated from the propagative pump
waves is done out of the region of the nonlinear force action.
Section III B 2 contains the qualitative analysis of the de-
modulated signal behavior inside the region of the nonlinear
sources associated with propagative pump waves. Finally,
the analysis of the displacement wave demodulated from
evanescent pump waves is carried out. The following results
allow us to explain the main physical features of the numeri-
cal results presented in Sec. IV.

A. Analysis of the nonlinear force

According to Eq. (7), the expression of the nonlinear
force, quadratic in HF displacement, acting on the bead(or
mass) numbern is written

FNLsnd = −
b

2
fUsn + 1d − 2Usnd + Usn − 1dg

3fUsn + 1d − Usn − 1dg. s20d

The expression(15) of the displacement of the beadn,
solution of the linear propagation equation(8) in the case of

two excitation frequenciesv1 and v2, is substituted in the
expression(20). Retaining only the terms with the difference
frequencyV=v2−v1, the nonlinear force(20) can be rewrit-
ten like the expression(17). When v1 tends tov2 sV=v2

−v1 tends to 0d, this force is simplified in the form

FNL . − 2b RehAv1
s0dAv2

* s0deiVtje−2uk9svduan

3hcosfk8svdag − coshfuk9svduagjsinhfuk9svduag,

s21d

where k8svd.k8sv1d.k8sv2d and k9svd.k9sv1d.k9sv2d
are, respectively, the real and imaginary parts of the pump
wave number for the high frequencyv.v1.v2. In the low
frequency limit v!vc and for weak attenuationuk9u / uk8u
!1, a simpler form of the nonlinear force, responsible for
the self-demodulation process, appears:

FNL .
ab

,asvd
v2

vc
2RehAv1

s0dAv2

* s0deiVtje−an/,asvd. s22d

This nonlinear force is proportional to the coefficient of
quadratic nonlinearityb, and is proportional to the inverse of
the characteristic attenuation length of the HF acoustic inten-
sity ,asvd;s2uk9svd u d−1. This force decreases likee−an/,asvd

with increasing distance.
If the phases of the pump waves atn=0 are equal, the

complex amplitudesAv1
s0d andAv2

* s0d are real, and the no-
tation A1,A2 can be used. Further, ifA1=A2=A, the term
A1A2 is equal toA2 whereA is the excitation amplitude of
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both waves at frequencyv1 andv2. In this case, the nonlin-
ear force(22) varies like the squared pump wave amplitude
A2. The low frequency regimesv!vcd described by Eq.(22)
is identical to the regime of 1D(plane-wave) parametric an-
tenna in homogeneous media[25].

B. Analysis of the LF demodulated signal

The analysis of the demodulated displacementUsnd at the
low frequencyV, obtained in the form of Eq.(19), is done
first for propagative pump waves and second for evanescent
pump waves. Outside the excitation region, i.e., when the
term e−an/,asvd of Eq. (19) or Eq. (22) tends to 0(the pump
waves are sufficiently attenuated), the nonlinear force be-
comes negligible. The LF demodulated wave is then entirely
generated, and propagates freely in the medium. In this case,
the demodulated waveUIVsnd is equal to a function
Gsv1,v2d multiplied with a phase term s1
−eiksVdan−iDkande−iksVdan.e−iksVdan which describes its propa-
gation in the dispersive medium. This functionGsv1,v2d
represents a spectral transfer function describing the nonlin-
ear process of difference frequency excitation by the self-
demodulation process. It gives the opportunity, together with
the phase term, to find the amplitude and the phase of the
demodulated signal at frequencyV=v1−v2 from the knowl-
edge of the pump waves emitted at frequenciesv1 and v2.
Importantly, Gsv0,Vd=Gsv1=v0,v2=v0−Vd can also be
applied for the analysis of the case when a HF wave packet is
used for the pump. Then, in accordance with Eq.(3) and the
definition of UVsn,t ,v1=v0,v2=v0−Vd in Eq. (19), out of
the antenna bodysn@1d,

UVsn @ 1,t,v0,tmd

= ImE
−`

+`

Gsv0,Vde−V2tm
2
expFiVSt −

ksVd
V

anDGdV.

s23d

Consequently, the product 2pGsv0,Vde−V2tm
2

provides the
spectrum of the demodulated wave in the accompanying sys-
tem of coordinates whenn@1. In other words, the spectrum
of the demodulated signal might be obtained by multiplica-
tion of the spectrum of the intensity envelope of the HF wave

e−V2tm
2

by the functionGsv0,Vd. This is the reason to call
Gsv0,Vd the spectral transfer function. In order to under-
stand the LF generation dynamics in the region of the non-
linear sources and particularly the role of the velocity disper-
sion, the whole phase terms1−eiksVdan−iDkande−iksVdan will
also be analyzed in the following.

For the analysis of the self-demodulation process, the
pump wave frequenciesv and the associated wave numbers
are respectively normalized to the cutoff frequencyvc and to
the factors2/pdkc. The main advantage of such a normaliza-
tion is that both the phase velocitycf and the group velocity
cg are equal to 1 when the frequencyv tends to 0.

When these normalizations are done, the transfer function
of the self-demodulation process takes the following general
form:

Gsv1,v2d =
b

2a
A2fcossk1 − k2

*d − cossk1 + k2
*dg

V2 − sin2sk1 − k2
*d

sinsk1 − k2
*d.

s24d

In the following, the notationv1=v ,v2=v−V with V.0 is
used.

1. Case of propagative pump waves

In the case of propagative pump waves, in contrast to the
evanescent ones for which a further exact development of the
transfer functionG is possible, it is necessary to consider that
uVu! uvu.

The relation 0,V!vø1 is then satisfied. Taking into
account these equalities and inequalities, each term of the
transfer function(24) can be simplified.

Considering that the attenuation of the propagative waves
is sufficiently weak to allow their propagation, i.e., the
modulus of the imaginary part of the wave numberuk9svdu
!1, and neglecting the dispersion of attenuationfuk9svdu
.uk9sv−Vdug, the imaginary part of the differencesk1−k2

*d is
written as 2i uk9svdu. Using the Taylor expansion of the dis-
persion relationship at the first order, valid foruVu
! us]k8 /]vd / s]2k8 /]v2du, the real termsk18−k28d is approxi-
mated byk18−k28.Vs]k8 /]vdsvd!1. In this case,

sinsk1 − k2
*d . V

] k8

] v
svd + 2i uk9svdu, s25d

cossk1 − k2
*d . 1 s26d

at the first order inVs]k8 /]vdsvd and in uk9svdu. With the
same approximations,

cossk1 + k2
*d . 1 − 2v2 + 2vÎ1 − v2V

] k8

] v
svd. s27d

Substituting the simplified terms(26) and (27) in the ex-
pression of the transfer function(24), and usings]k8 /]vdv
=cg

−1svd=s1−v2d−1/2, wherecgsvd denotes the group veloc-
ity, a new expression for the transfer functionG is obtained:

Gsv,Vd .
b

a
A2v2 V/cgsvd + 2i uk9svdu

hfV/cgsvdg + 2i uk9svduj2 − V2 . s28d

Using the notation,asvd=1/2uk9svdu for the attenuation
length of the acoustic pump intensity, and considering that
for a qualitative analysis of the behavior ofG,1+cgsvd is of
the same order as 1s0øcgsvdø1d, the expression(28) is
simplified to the form

Gsv,Vd ,
b

a
A2v2,asvd

1

p + i
s29d

where p=p8f1−cgsvdg=,asvdksVdfcfsVd /cgsvdgf1−cgsvdg
is a nondimensional parameter. WithV!vø1, the relation
cfsVd.cfs0d=1 is satisfied, and the parameterp can be
rewritten as
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p . ,asvdksVd
cfsVd − cgsvd

cgsvd
. s30d

In this expression,,asvd /cgsvd represents the time taken by
the HF pump wave packet to travel along its characteristic
attenuation region. The factorf,asvd /cgsvdgfcfsVd−cgsvdg
represents the characteristic spatial separation between the
HF pump wave packet and the demodulated signal at the
scale,asvd, i.e., at the limit of the nonlinear interaction re-
gion. So the parameterp is proportional to this distance mea-
sured in LF acoustic wavelengths.

First limiting case.When p!1, this spatial separation is
small compared to the wavelengthlsVd of the demodulated
signal, and the transfer function takes the following form:

Gsv,Vd , − i
b

a
A2v2,asvd. s31d

In this case, the amplitude variation of the demodulated sig-
nal as a function of the pump frequency is controlled by the
pump wave attenuation[parameterv2,asvd]. The velocity
dispersion does not play an important role, either due to the
small antenna length, or due to the small difference between
the velocitiescgsvd andcfsVd, in producing a sufficient spa-
tial separation between the HF wave packet and the LF de-
modulated signal at the end of the interaction region. In this
limiting case, the functionG being independent of the vari-
able V, the demodulated displacement temporal profile(in
the case of the demodulation of a wave packet) remains
qualitatively unchanged compared to the initial modulation
function of the pump signal[uUVsn,t ,v0,Vdu is independent
of V in Eq. (3)].

For an attenuation length of the form,asvd,1/v, as is
considered later, the transfer functionGsv ,Vd increases lin-
early with the pump frequencyv. This first limiting case
corresponds to thep.0.15 curve in Fig. 2 of the numerical
results section, and to curvep.0.13 of Fig. 3.

Second limiting case.When p@1, this spatial separation
is large compared to the wavelengthlsVd of the demodu-
lated wave, and the transfer function takes the following
form:

Gsv,Vd ,
b

a
A2 v2Î1 − v2

Vs1 −Î1 − v2d
s32d

where cgsvd=Î1−v2. This development is valid only for
s1−vd@V, which ensures the validity of the Taylor devel-
opment of the dispersion relation carried out previously with
the small parameterV. It is already possible to say that in the
case of an excitation with a HF pump wave packet[as con-
sidered in Eq.(3)], the demodulated temporal profile will be
integrated due to the presence of the factorV in the denomi-
nator of expression(32). Two limiting cases(giving the same
form for G) can be identified in the expression(32), the case
of small velocity dispersion wherev!1 [in this casecgsvd
.cfsVd.1] and the case of strong velocity dispersion
where v is near 1fcgsvd!cfsVdg in the limit, however,
where 1−v@V.

Whenv!1, the functionG has the form

Gsv,Vd ,
b

a
A2 1

V
. s33d

The conditionsp@1 and v!1 mean that the length scale
where nonlinear interaction takes place,,asvd, is large com-
pared to the demodulated signal wavelengthlsVd, i.e., al-
though the velocity difference is small, the interaction region
is sufficiently long for the spatial separation between HF
nonlinear sources and the demodulated wave to be signifi-
cant. In this case, the functionGsv ,Vd is independent of the
pump frequencyv, meaning that out of the antenna body, the
demodulated signal amplitude does not depend onv.

When v tends to 1(still with 1−v@V), the functionG
has the following form:

FIG. 2. Demodulated displacement amplitude as a function of
the observation distance(expressed in number of beadsn) for four
different values of the nondimensional parameterp. For compari-
son, the amplitude of the demodulated signal from evanescent pump
waves is plotted as a dashed line.

FIG. 3. Evolution of the demodulated temporal velocity profile
with the observation distance in two limiting casesp!1 and p
@1.
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Gsv,Vd .
b

a
A2

Î1 − v2

V
. s34d

The velocity difference betweencgsvd andcfsVd is signifi-
cant, which ensures a strong influence of the velocity disper-
sion on the demodulated signal. The factorÎ1−v2 that ap-
pears in the denominator of expression(34) describes the
decrease of the demodulated wave amplitude whenv ap-
proaches the cutoff frequency 1.

In these two last limiting cases, the dependence ofG on V
is identical; the velocity dispersion influence is significant
and manifests itself by a temporal integration of the demodu-
lated LF signal. This is illustrated in Sec. IV, by the profile
n=7000, p.10 in Fig. 3. Transition between the limiting
casesp!1 andp@1 is shown in Fig. 4.

Limiting casev tends to 1. The interest in analyzing this
limiting case, where the conditionV@1−v is satisfied(v is
in the vicinity of the cutoff frequency 1), is to check the
correspondence between the high frequency limit of the
propagative zone and the low frequency limit of the evanes-
cent zone(case studied later in Sec. III B 3).

WhenV@1−v, the Taylor expansion of the termk18−k28
cannot be done with the help of the small parameterV, but
should be derived with the 1−v small parameter:

k18 − k28 . − Î2V + Î2s1 − vd . − Î2V, s35d

and the following terms, which appear in the general form of
the transfer function(24), have the forms:

sinsk1 − k2
*d . − Î2V − 2i uk9svdu,

cossk1 − k2
*d . 1 −

1

2
fÎ2V + 2i uk9svdug2,

cossk1 + k2
*d . − 1 +V. s36d

These expressions(36) are substituted in Eq.(24) to ob-
tain a new expression for the transfer functionG:

Gsv,Vd .
b

a
A2

Î2V + 2i uk9svdu

V2 − fÎ2V + 2i uk9svdug2 . s37d

As V!1, the termV2 in the denominator of this expression
is always negligible compared toV. The notation 2uk9svdu
=1/,asvd is reintroduced andG is simplified:

Gsv,Vd . −
b

a
A2 1

Î2V + 2i uk9svdu
. s38d

By introducing the nondimensional parameterP
=ÎV /2,asvd, the functionG is rewritten as

Gsv,Vd . −
b

2a
A2,asvd

1

P + i
. s39d

When the condition 1−v@V holds, which was the case in
the previous subsection, the characteristic pump frequency is
sv1+v2d /2=sv+v−Vd /2.v whenV!v. Inversely, in the
present analysis, the condition 1−v!V implies that the
characteristic pump frequency is nowsv1+v2d /2=sv+v
−Vd /2=f2+2s1+vd−Vg /2.1−V /2. In this limiting case
s1−v!Vd, the parameterp used for the analysis of the pre-
vious case 1−v@V can be rewritten as

p = ,asvd
V

cfsVd
cfsVd − cgsvd

cgsvd
. ,asvd

V

cgs1 − V/2d
s40d

with cfsVd.1 and cgsvd.cgs1−V /2d→0. Finally, as

cgs1−V /2d.Î1−s1−V /2d2.ÎV, the previous parameterp
is equivalent to the new oneP. The physical interpretations
of these parameters are thus identical when taking into ac-
count the difference in the characteristic frequencies of HF
waves in the considered situations.

When P!1, the phase mismatch between the nonlinear
sources and the demodulated signal at the limit of the inter-
action region is weak, and the transfer function takes the
form

Gsv,Vd . − i
b

2a
A2,asvd. s41d

This function is proportional to,asvd and does not depend
on V. This limiting case corresponds to the limitp!1,1
−v@V, the expression of Eq.(31).

When P@1, the phase mismatch between the nonlinear
sources and the demodulated signal at the limit of the inter-
action region is large, and the transfer function has the form

Gsv,Vd . −
b

2a
A2 1

ÎV
. s42d

In this case, the factor 1/ÎV ensures the partial integration
(of the order of 1/2) of a temporal profile, demodulated from
a pump wave packet[a consequence of the substitution of
this term in Eq.(3)]. From the comparison of Eq.(34) and
Eq. (42) it can be concluded that when(for the fixedV!v)
the frequencyv approaches 1, the integration of the profile
transforms into partial integration.

FIG. 4. Transition in the velocity profile, demodulated from
propagative pump waves, associated with the sound dispersion. The
parameterp is, from the darkest to the lightest line, 0.16, 0.73, 1.6,
2.76, 6.6, 12.2, respectively,C=2310−7, andV.1.7310−3.
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2. Behavior in the region of the nonlinear sources

The analysis of the result(19) in the region of the nonlin-
ear sources, i.e., whenueiksVdan−iDkanu is not small compared to
1, is justified for propagative pump waves. For evanescent
pump waves, attenuated along a distance of several beads,
the source region is so limited in space that the observation is
too difficult to be realized in this region. The result(19) is
the product of the phase terms1−eiksVdan−iDkandeiVt−iksVdan

and of the transfer functionGsv ,Vd studied earlier for
propagative pump waves. Thus, only the phase term should
be analyzed. The termeiVt−iksVdan describes the propagation
of the demodulated LF wave in the chain. The term 1
−eiksVdan−iDkan is thus to be analyzed. It is controlled by the
behavior of the following phaseF:

F = fDk − ksVdgan. s43d

In the limit where the attenuation of the pump waves is
weak, the modulus ofeiksVdan−iDkan is close to 1. In the fol-
lowing analysis, the imaginary part of the propagative wave
number is neglected and the wave numbers and frequencies
are normalized[respectively tos2/pdkc and vc]. Moreover
Dk=k8sv1d−k8sv2d can be simplified ifk8sv1=v+V /2d and
k8sv2=v−V /2d are expanded in Taylor series(under the
condition 1−v@V). In this case,Dk.V /cgsvd up to the
third order inV.

The wave numberksVd is equal to V /cfsVd, where
cfsVd is the phase velocity at low frequencyV. This phase
velocity is obtained from the dispersion relation(12), having
the form cfsVd=V /arcsinsVd.1 for V!1. The group ve-
locity at high frequency is also derived from the dispersion
relation (12) and is equal tocgsvd=cfs0dÎ1−v2. Conse-
quently, the phase(43) to be analyzed can be rewritten with
normalized quantities:

F = − 2VS1 −
1

cgsvd
Dn. s44d

If this phase is equal to −2p, or −s2,+1dp with ,PN the
term 1−eiksVdan−iDkan of the result(19) has a minimum or a
maximum, respectively. The pump frequencies for which a
minimum is obtained satisfy the following relation:

v =Î1 −S1 −
p,

Vn
D−2

. s45d

The distances for which a minimum is obtained are

n =
p,

V
f1 − s1 − v2d−1/2g−1. s46d

If the pump wave absorption is taken into account, the term
1−eiksVdan−iDkan of Eq. (19) has minima(or maxima) less
pronounced because the modulus ofeiksVdan−iDkan is no longer
equal to 1 but becomes smaller. Its behavior depends on the
difference between the phase velocity of the LF demodulated
wave cfs0d.1 and the HF group velocity of the nonlinear
sourcescgsvd. In the region of existence of the nonlinear
sources, the occurrence of a succession of minima and
maxima in the amplitude of the demodulated LF wave is thus
a manifestation of an effect of velocity dispersion associated

with the asynchronism between nonlinear sources and the
demodulated wave. This behavior is clearly depicted as a
function of the propagation distance in Fig. 2 and as a func-
tion of the pump frequency in Fig. 5.

3. Case of evanescent pump waves

The pump waves become evanescent when the pump fre-
quencyv is higher than the cutoff frequency of the granular
chainvc. They are localized near the high frequency emitter.
Consequently, the demodulated signal is almost always reg-
istered out of the region of nonlinear interaction[the modu-
lus of the terme−iDkan of Eq. (19) is much less than 1].

For the analysis of the demodulation of evanescent pump
waves, it is possible to start from the general expression of
the transfer function(24). Frequencies and wave numbers are
still normalized, respectively, tovc and 2kc/p. Considering
v2=v and v1=v+V with V.0, and using the dispersion
relation Eq.(13), the transfer function(24) can be rewritten
as a function ofv andV:

Gsv,Vd

= − i
b

a
A2vsv + VdfvÎsv + Vd2 − 1 + sv + VdÎv2 − 1g

V2 + fvÎsv + Vd2 − 1 + sv + VdÎv2 − 1g2 .

s47d

Taking into account the fact thatV!v, and for pump fre-
quencies sufficiently far from the cutoff frequencysv−1
@Vd, this expression becomes

Gsv,Vd . − i
b

a
A2 v

2Îv2 − 1
. s48d

It is interesting to note that in this case, whenv becomes
large compared to the cutoff frequency 1, the modulus
uGsv ,Vdu,bA2/a2 is independent of the pump frequencyv
and independent of the difference frequencyV. The nonlin-

FIG. 5. Transition between the generation of the demodulated
signal by propagative pump waves and by evanescent pump waves.
The observation distance is fixed,n=5000, the attenuation constant
is C=5 10−7, and demodulated frequencies are respectively from
the brightest to the black linesV.1.7 10−4;8.3 10−4;3.3 10−3 and
8.3 10−3.
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ear sources are localized on the very first beads due to their
evanescent nature, which means that they can be considered
(for v2@1) as surface sources for the LF demodulated wave.
As a consequence, no dispersion effect can influence the pro-
cess of self-demodulation which ensures that no frequency
dependence is observed.

Inversely, still considering thatV!v, but for pump fre-
quencies in the vicinity of the cutoff frequencysv−1!Vd,
the transfer function is

Gsv,Vd . − i
b

a
A2

Î2
ÎV

. s49d

The limit (48) shows that in the case of the demodulation
of a pump wave packet, the demodulated temporal displace-
ment will exhibit a profile identical to the intensity modula-
tion function of this HF wave packet, due to the absence of
dependence onV. In contrast, the limit(49) ensures that the
temporal profile of the demodulated displacement is partially
integrated due to the presence of the termÎV in the denomi-
nator.

For the analysis of the demodulated signal from evanes-
cent pump waves, the conventionv2=v andv1=v+V with
V.0 has been used, but for the analysis of the demodulated
signal from propagative pump waves it is the convention
v1=v andv2=v−V with V.0 which has been used. Com-
parison of the result(49) obtained in the evanescent limit
v→1,v.1 and of the result(42) obtained in the propaga-
tive limit v→1,v,1, should thus be carried out by chang-
ing in one of the two casesV by −V. This produces a factor
−i in the transfer function where −V is introduced[due to the
term sVd−1/2 which occurs in these limiting cases], and the
two results agree well. Continuity ofGsv ,Vd across the tran-
sition fromv,1 to v.1 is also confirmed by the numerical
results taking into account the total expression(19) (see Fig.
5).

4. General qualitative analysis of the dependence
of the demodulated signal onv and V

The demodulated displacement is proportional in the gen-
eral case to

UIV ,
FNLsn = 0,v,Vd
V2 − sin2sDkd

s50d

whereFNL is the nonlinear force acting in the demodulation
process(the time dependenceeiVt is omitted). The denomi-
nator of “resonant” type is common for forced processes. In
the limiting casev!1 (the nondimensional parameterp
!1), characterized by a negligible role of the dispersion ef-
fects, the denominator describes synchronism effects and the
net effect is proportional to the length of their accumulation,
i.e., proportional to the length of the antenna,asvd:

1

V2 − sin2sDkd
, ,asvdlsVd. s51d

In contrast, in the opposite limiting casev@1, there are
no effects of the signal accumulation just because the an-
tenna is reduced to a single(first) nonlinear spring near the
surface. In this limit,

sin2sDkd . − sinh2f2uk9svdug , e4uk9svdu , v4 s52d

strongly dominates in the resonant denominator and the con-
ditions for the signal accumulation rapidly diminish with in-
creasingv.

However, in accordance with Eq.(50), not only the accu-
mulation of the signal but also the magnitude of the forces
should be compared in these two limiting cases. The nonlin-
ear force acting on the bead numbern is equal to the differ-
ence of the forces applied from different sides. From Eq.(7),

FNLsnd , fUvsn + 1d − Uvsndg2 − fUvsnd − Uvsn − 1dg2.

s53d

In the low frequency limitsv!1d, each of the strains
fUvsn+1d−Uvsndg /a and fUvsnd−Uvsn−1dg /a is inversely
proportional to the HF acoustic wavelength, that is, propor-
tional tov. The differences between the forces applied to the
bead from different sides are controlled by HF wave absorp-
tion or by the difference in the high frequencies, that is, by
V. As a result, in the limitv!1,

FNL , v2maxhksVd,k9svdj.

In the case of a high quality antenna,,asvd@lsVd [25],
and

FNL , v2ksVd. s54d

Consequently, from Eq.(50), Eq. (51) and Eq.(54),

UIV , v2,asvd, s55d

which is the classical result for the 1D parametric antenna in
a homogeneous medium[25].

In the limit v@1, the situation is different. The forceFNL
in Eq. (53) is controlled by the displacement of the single
lowest number bead. Formally,

FNLsn = 0,v,Vd , − Uv
2s− 1d , e4uk9svdu , v4. s56d

Thus, the localization of the force leading to the dependence
,v4 of the denominator is completely compensated by the
increase of force amplitudes,v4d described by Eq.(56).
Consequently, in the regimev@1,UIV depends neither onV
nor onv.

This qualitative analysis confirms the result obtained ear-
lier on the basis of the asymptotic expansions. In the inter-
mediate frequency rangev,1 (or, in general, when the non-
dimensional parametersp andP are not small), the influence
of the wave velocity dispersion on the spectral transfer func-
tion Gsv0,Vd should be taken into account.

IV. NUMERICAL TREATMENT AND RESULTS

As previously, frequencies and wave numbers are normal-
ized for numerical calculus and in the presentation of the
results. The quantities that can be varied experimentally such
as the pump frequencyv, the modulation frequencyV, or
the observation distancen (number of beads) are used in the
following to vary the nondimensional parameters of the
problem p and P, and to go from one previously analyzed
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limiting case to another. The attenuation of the propagative
pump waves is taken into account through an imaginary part
of the wave number of the formuk9svdu=Cv whereC is a
constant. This frequency dependence of the attenuation has
been experimentally observed in three-dimensional granular
media[13]. However, it is possible to introduce in this for-
malism any kind of function of the frequency to describe the
attenuation, including, for instance, nonmonotonic functions
for relaxation phenomena.

A. Influence of the observation distance

In order to understand the different regimes of the para-
metric antenna operation, it is interesting to plot the demodu-
lated signal amplitude as a function of the observation dis-
tance, especially in the region of existence of the nonlinear
sources.

1. Case of two pump frequencies

In the case of two neighboring pump frequenciesv1 and
v2 (the only demodulated frequency is thusV!v1,v2), the
demodulated signal amplitude is plotted as a function of the
distance for different values of the nondimensional param-
eter p, on Fig. 2. In this simulation,V.8310−4, and C
=2310−7. As V!v1,v2, it is possible to consider for the
discussion thatv1.v2.v. In Fig. 2, four curves are plotted
in continuous lines and correspond to four values of the non-
dimensional parameterp.0.15,0.65,1.85,13 obtained by
varying the pump frequency respectively, asv.8310−2,3
310−1,6310−1,0.98. For these pump frequencies the at-
tenuation length of the pump intensity(characteristic length
of the parametric antenna) is, respectively, in terms of the
number of beads, ,asvd /a.3.23104,0.83104,0.4
3104,0.233104. The observation of the demodulated signal
is thus mainly realized in the region of nonlinear interaction
between the pump waves.

For p!1, the demodulated amplitude is proportional to
the distanceu1−eiksVdan−iDkanu;u1−ejnu.u1−1−jnu.ujnu (in
the limit ujun!1) (see the curvep.0.15 of Fig. 2). For p
@1, the same dependence is observed along a distance of
several hundred beads, but a saturation phenomenon appears.
The demodulated amplitude reaches then a maximum value
and begins to oscillate between local minima and maxima
(see the curvep.13 of Fig. 2). This behavior has been dis-
cussed in Sec. III B 2, and is associated with the velocity
difference between the nonlinear sources that propagate at
the velocity 0øcgsvdø1 and the demodulated wave that
propagates at the velocitycfsVd.1. In accordance with Eq.
(46) obtained from the analysis of the phase term of the
demodulated displacement(19), the first minimum for,=
−1,V.8310−4, andv.0.98 should appear at the distance
n.1100, and the following minima at multiple integer dis-
tances. This behavior is well observed forp.13 in Fig. 2.

For comparison, the demodulated signal amplitude from
evanescent pump wavessv.1.083d is plotted as a dashed
line on the same Fig. 2. This amplitude is constant, starting
from several beads, i.e., out of the region of existence of the
pump waves.

2. Case of a Gaussian pump wave packet

In the case of the demodulation of a pump wave packet
with a Gaussian spectrum(or equivalently modulated by a
Gaussian temporal function), the manifestation of the effects
previously mentioned is different. The velocity dispersion
does not produce minima and maxima in the demodulated
displacement amplitude, but gives an amplitude saturation
and a widening of the temporal profile of this signal. This
behavior is directly linked to the fact that the nonlinear
sources propagate more slowly than the demodulated signal
they generatefcgsvd,cfsVdg. This behavior is illustrated on
Fig. 3, where the temporal profiles of the acoustic particle
velocity are plotted for several distances and for two limiting
casesp!1 andp@1. The analysis has been carried out for
the acoustic particle displacement but velocity temporal pro-
files are plotted here and in the following. The spectral trans-
formation from the particle displacement to the particle ve-
locity is simply done by aniV multiplication.

The widening of the Gaussian temporal profile of dis-
placement corresponds to an integration of this profile, which
ensures also an integration of the demodulated velocity pro-
file, i.e., the transition from the first derivative of a Gaussian
function to the derivative of zero order. This behavior has
been predicted in Sec. III B 1, in the analysis of the two
limiting casesp!1, Eq.(31), andp@1, Eqs.(33) and(34),
for propagative pump waves. The occurrence of the termV
in the denominator of expressions(33) and (34) ensures the
demodulated temporal profile integration in the casep@1.
For p@1sv.0.97,V=1.7310−3,C=5310−7d in Fig. 3, the
integration of the velocity profile takes place between the
observation distancesn=200 andn=7000. Moreover, due to
the asynchronism phenomenon, a saturation of the demodu-
lated signal amplitude is observed starting from distances of
several hundred beads. This is not the case when the velocity
dispersion effects on the parametric antenna operation are
negligible(p!1,v.0.083 in Fig. 3). The demodulated sig-
nal amplitude in the latter case is not saturated in the range
of the presented observation distances and the temporal pro-
file remains unchanged, proportional to the first derivative of
a Gaussian function.

B. Transition associated with the velocity dispersion

Without changing the observation distance of the de-
modulated signal, it is, however, possible to observe a tran-
sition in the shape of the demodulated velocity temporal pro-
file by changing such parameters of the pump signal as the
central frequency of the wave packet or the characteristic
time of modulation of this packettm,1/V. In Fig. 4, such a
transition is presented, for which the nondimensional param-
eter p is varied fromp.0.16 top.12.2 by increasing the
carrier frequency of the Gaussian wave packet betweenv
.0.083 andv.0.97. These limiting cases correspond to the
expressions(31) and(32) of the transfer functionGsv ,Vd of
the self-demodulation process, respectively. Forp
!1, Gsv ,Vd,v2,asvd, but for p@1, Gsv ,Vd
,v2cgsvd /Vf1−cgsvdg, which ensure an integration of the
demodulated signal profile.
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At the transition(integration of the velocity profile), the
nondimensional parameterp is of the order of 1, which al-
lows us to estimate the unknown parameter,asvd
.cgsvd /ksVdf1−cgsvdg, because other variablessv ,Vd are
controlled.

It is important to notice that this transitionp!1→p@1,
obtained by increasing the carrier frequencyv, can also be
done by increasingV (or by decreasing the characteristic
modulation time of the pump wave packettm,1/V). The
emergence of the latter transition for several values of the
fixed carrier frequencyv should allow us to extract the de-
pendence onv of the pump wave intensity attenuation,asvd.

C. Transition propagative \ evanescent pump waves

When the pump waves are no longer propagative but are
localized in space near the HF emitter, the cumulative phe-
nomena associated with the co-propagation of HF pump
waves and LF demodulated waves dispppears. This singular
modification in the pump wave transport might be a source
of information about the medium, and particularly about its
microstructure.

1. Case of two pump frequencies

The complete formula Eq.(19) is used to plot the de-
modulated signal amplitude as a function of the pump fre-
quency in Fig. 5. The observation distance is fixed ton
=5000, the attenuation constant isC=5310−7, and the de-
modulated frequencies are equal toV.1.7310−4, 8.3
310−4, 3.3310−3, 8.3310−3. For these four cases, a strong
fall of the parametric antenna efficiency is observed around
the cutoff frequencyv=1 (betweenv=0.9 andv=1.1), typi-
cally from one to three orders of magnitude depending onV.
When V.8.3310−3, an amplitude saturation effect due to
the phase mismatch between the nonlinear sources and the
demodulated wave occurs in the propagative zonesv,1d.
This saturation effect is weaker for lower demodulated fre-
quenciesV. As a consequence, the efficiency fall, between,
for instance,v=0.9 andv=1.1 is higher forV.1.7310−4

(more than three orders of magnitude) than for V.8.3
310−3 (less than two orders of magnitude).

Similarly to the casep@1 of Fig. 2, a pattern of minima
and maxima is observed for the highest values ofV in Fig. 5.
The same phenomenon is responsible for this behavior, i.e.,
the velocity dispersion, which ensures an asynchronism be-
tween the nonlinear sources and the demodulated wave, be-
ing alternately in phase and out of phase. The formula, Eq.
(45), allows us to find the minima, which gives, forn
=5000 andV.8.3310−3, a first minimum atv.0.37. This
result is in agreement with the corresponding curve, the
black one in Fig. 5.

At the transition,v=1 andksvd=2/a, which gives infor-
mation on parameters like the contact stiffnessa, the static
stress applied on the chain, and the diameter of the beadsa.

2. Case of a Gaussian pump wave packet

Concerning the signal profile demodulated from a Gauss-
ian wave packet, its form can evolve in the transition be-

tween propagative pump waves and evanescent pump waves.
In Fig. 6, three transitions are plotted for three values of the
nondimensional parameterp, p@1, p.1, andp!1. Three
carrier frequencies are used for each transition,v.0.67 and
0.83 (propagative) andv.1.083(evanescent). The value of
the attenuation constant remains unchanged,C=10−6.

To vary the parameterp from p!1 to p@1, the charac-
teristic modulation time of the pump wave packet is de-
creased fromtm.8.3310−2 to tm.3.3310−5.

When p@1, the modification of the profile associated
with the transition between propagative and evanescent
pump waves is represented in Fig. 6(a). As the effects of
velocity dispersion in the propagative zone are significant
[p@1, limiting case(32)], the particle velocity profile is in-

FIG. 6. Transition between the generation of the demodulated
signal by propagative pump waves and by evanescent pump waves
(out of the interaction region) for three values of the nondimen-
sional parameterp. To give an estimation of the amplitude fall at
the transition, the demodulated amplitudes are presented in the
insets.
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tegrated and is proportional to a Gaussian function. The par-
ticle velocity profile demodulated from evanescent pump
waves is proportional to the first derivative of a Gaussian
when the carrier frequency is sufficiently greater than the
cutoff frequency[see the limiting case(48)]. Thus, the tran-
sition from the propagative zone to the evanescent one mani-
fests itself in this case by a derivation of the demodulated
temporal profile. The associated inset shows a fall of at least
one order of magnitude in the efficiency of the parametric
antenna.

Whenp.1, the integration of the LF profile for propaga-
tive pump waves due to the velocity dispersion is partial. The
transition in the shape of the profile still exists but is less
clear than in the casep@1. However, the signal being less
saturated in amplitude due to a weaker influence of the ve-
locity dispersion, the demodulated signal amplitude fall is
greater than in the casep@1 [see the inset of Fig. 6(b)].

Finally, whenp!1, no transition in the shape of the de-
modulated profile is observed. For both propagative and eva-
nescent pump waves, the velocity profile is proportional to
the first derivative of a Gaussian function[Fig. 6(c)]. It is,
however, in this limiting case that the efficiency of the para-
metric antenna exhibits the deepest fall in amplitude between
v.0.83 (propagative) and v.1.083 (evanescent), as is il-
lustrated in the inset of Fig. 6(c). It has to be noticed that in
this limiting case, the amplitude of the demodulated signal
increases with the pump frequency practically all along the
propagative zone, which is not the case forp@1, where over
a non-negligible region the transfer functionGsv ,Vd de-
creases as a function of the pump frequency. In the evanes-
cent zone, the demodulated amplitude decreases as a func-
tion of the pump frequencyv.

In conclusion, the transition between propagative and eva-
nescent pump waves manifests itself, forp@1, by a deriva-
tion of the demodulated profile and an efficiency fall of one
order of magnitude. Forp!1, transformation of the profile
is not predicted but there is a fall of efficiency of at least two
orders of magnitude.

V. CONCLUSIONS

We have developed a theoretical model for the nonlinear
self-demodulation process in a granular chain. This model
takes into account the precise dispersion relation associated
with the discrete nature of the lattice, and, in particular, ac-

counts for the evanescent modes at high frequencies. By an
integration of the analytically obtained LF displacement in
the case of two primary frequencies, we have considered the
self-demodulation of Gaussian wave packets. The dynamics
of the LF demodulated wave amplitude is studied as a func-
tion of the primary wave frequency, the distance of propaga-
tion, and the absorption. The numerical results of Sec. IV
were found to be in agreement with the analytical predictions
of Sec. III not only qualitatively but also quantitatively(suc-
cession of minima and maxima in the demodulated ampli-
tude as a function of pump wave frequency, for instance).
Moreover, the theoretical analysis has shown that only a few
parameters(p,P, etc.) are necessary to discriminate the dif-
ferent regimes of the parametric antenna operation in a
granular chain.

The transition from propagative to evanescent primary
waves manifests itself in each case by a strong decrease in
the demodulated signal amplitude. In some particular cases,
the shape of the temporal profile is also differentiated[Fig.
6(a) inset] when the primary waves become evanescent.

Velocity dispersion, through the asynchronism between
HF nonlinear sources and LF demodulated waves, is saturat-
ing the self-demodulation process. Its manifestation is a pat-
tern of maxima and minima in the amplitude dynamics of the
LF demodulated wave in the case of two primary frequen-
cies, or a saturation in amplitude and a pulse widening in the
case of wide-frequency-band excitations.

It should be noted that although the transition from bal-
listics to diffusion, taking place with increasing frequency of
the acoustic carrier wave in 3D irregular granular packing,
leads to stronger localization of the acoustic energy near the
emitter, similarly to the transition from propagative to eva-
nescent mode transport in the 1D periodic granular chain
studied above, its influence on the demodulation process is
predicted to be quite different. The transition from propaga-
tive to evanescent pump waves manifests itself by a deriva-
tion of the demodulated wave pulse profile(this derivative
can be partial or even absent in some cases), while the tran-
sition from ballistic to diffusion pump waves manifests itself
by an integration of the demodulated pulse profile(this inte-
gration can be partial or even absent in some cases[27]).
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