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Self-demodulation of elastic waves in a one-dimensional granular chain
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The self-demodulation process in a nonlinear granular chain of identical beads is studied analytically and
numerically. In such a medium, in accordance with the dispersion relation, longitudinal waves that have a
frequency higher than the so-called cutoff frequency of the chain are evanescent. Here, we study the influence
on the self-demodulation process of the transition from the propagative to the evanescent regime in pump wave
propagation that takes place when the pump frequency increases. An analytical solution in discrete coordinates
is derived for the case of two primary frequencies mixing into a single difference frequency. This solution is
then numerically integrated in order to analyze the demodulation of the acoustic wave @ackeif the
harmonic acoustic wave modulated in a pulse mo@iemporal demodulated profiles can be strongly sensitive
to the regimgpropagative or evanescemif primary wave transport. This model allows us to detect the cutoff
frequency of longitudinal elastic waves in the chain, without receiving the primary waves, but receiving the
low frequency nonlinearly radiated signal. The roles of frequency dependent attenuation, velocity dispersion,
and observation distance are analyzed.
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[. INTRODUCTION and nonlinear features that are taken into account in 1D mod-
) ] ) els represent fundamental problems of interest for the general
Although the pioneer theoretical results on nonlinearstydy of nonlinear latticef8,9]. Here the recent progress in
wave propagation in unidimensional granular chains weregrowth” of regular granular lattices should be mentioned
obtained 20 years add,2], there is still continuous activity [10-12
in this domain of researcf8—§]. Interest in these studies is ~ The propagation in granular assemblages is fundamentally
supported by the fact that many of the earth’s materials andonlinear due to the nonlinearity of the interaction between
of technological materials are granular and can be tested itwo adjacent elastic beads, which can be described using the
real experimental conditions by elastic wayssismics, un- Hertz law[14,15. The validity of this model for a chain of
derwater acoustics for diagnostics of the sediments, indueads has been tested experiment@he[4] and the refer-
trial real time monitoring, etg. Elastic waves have demon- ence therein One of the first works on the nonlinear effects
strated powerful capabilities in the control or in thein 1D granular chains was the propagation of solitonlike
evaluation of these granular materifl$]; however, a better Pulses[1,2]. Since this time, theoretical, numerical, and ex-
understanding of the characteristic features of wave propag&efimental studies of soliton collisiofi6] and backscatter-
tion in such media is needed, especially when scatterind™d [17], and of the detection of buried impurities using soli-
dispersion, absorption, or nonlinear effects occur. ons[18] have been performed. In parallel, other nonlinear
As mentioned in[4], the elastic dynamical behavior of €ffects were observedand modeleyi in 3D media, like
three-dimensional3D) granular materials represents a com- &coustic wave self-action in geophysics experiméne, or

plicated problem because it involves a huge number of m{fzarmonlcs generation and self-demodulation in - sand

well known parameters related, for instance, to the statistical™ .~ T ; ;
o ) L X Also, such fine linear properties for elastic wave propaga-
distribution of bead shapes, sizes, constitutive materials, ar\(j:% brop propag
n
i

h b bead " f Ki n in the longitudinal chain configuration were under active
the contacts between beads, to the geometry of packing, a estigation as velocity dispersid], scattering by inho-

to the structure of force chains. These features can lead ogeneitieg17], and shear and Rayleigh wave propagation
spemﬁc_effects in the elastic wave propagation such as no'sl%]. In this case, Rayleigh waves are obtained at very high
generation observed _[r5],§or ﬁo a strong sens_mwlty of 5(|)_und frequencies of longitudinal excitatiqithe wavelength of the

to temperature var|at|or[_ . In contrast, a simpler realistic g |5qic perturbation in the bead’s material is smaller than the
probl_em for both expgenmenta[ and theoret|cal_stud|es oagiameter of the begdAt these high frequencies, other acous-
glast[c wave propagagon consust; of a 1D chain, made ic modes like whispering or breathing can also manifest
identical elastic spherical beads in contact. In a sense, thtﬂemselves[ZS] For lower frequencies, one of the remark-
application of a 1D periodic system to model elastic wave,p o hredicted and observed features is the transition from

3ropa?at|orl1_||n granulterx]r materials could setehmtttc;] b? q‘:j'te 'Usropagative longitudinal modes to evanescent modes when
Imentary. HOWEVer, there IS a consensus that the undametyq frequency of the waves is increased above the so-called

tal results obtained in the 1D geometry might be useful forcutoff frequency of the chaifi24]. This cutoff frequency

the analysis of 3D problem,7]. Moreover, both discrete depends on a few identified parameters: the longitudinal

static stress applied to the chain, the size of the beads, and
the elastic properties of the bead mateffddbung modulus
*Electronic address: vincent.tournat@univ-lemans.fr and Poisson ratjo It is also possible to deduce the cutoff
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frequency from the low frequency sound velodjtyhich de- In Sec. I, the nonlinear equation of motion of the chain is
pends on the previous paramejeasd the bead radius. As a first derived in the quadratic approximation. Then, using the
consequence, the cutoff frequency is a source of informatiodispersion relation in the chain for both propagative and eva-

on the properties of a granular chain. _ nescent modes, the solution for the LF wave demodulated
One of the experimental difficulties with evanescentfrom two pump frequencies is derived.

waves is that they are attenuated at a distance of several bead|n sec. 11, the asymptotic analysis of this result is per-
diameters, and thus it is often difficult to detect them. Wetormed in different limiting cases, for propagative pump
propose a method to obtain information r_elated to the h'gh/vaves(strong and weak dispersive regime®r evanescent

frequency wave transport modepropagative or evanes- \aves and in particular for pump frequencies in the vicinity
ceny, using the nonlinear self-demodulation effect producedyt e cytoff frequency. The behavior of the nonlinear force

by a so-called parametric emitting antenna. The first st_udiegmd of the demodulated wave in the region of nonlinear in-
of this nonlinear process were performed 50 years ago in th{a

field of underwater acousticsee [25] and the references eraction Is also briefly analyzed. .

therein). Powerful amplitude-modulated high frequeriiF) Section IV presents the numerical treatment and the re-
waves(called primary or pump wavesre radiated first in  Sults for two kinds of HF pump wave signals, i.e., for two
the nonlinear medium of propagation. Due to the quadrati®UMmP frequencies and for a Gaussian wave pagetar-
elastic nonlinearity of the medium, different spectral compo-Monic wave modulated in amplitude with a Gaussian func-
nents of the emitted signéfor examplew; and w,) interact, tion). The influence of dispersion for propagative HF.pump
to give the sum components; + w,, 2w;, and v,, and also  Waves on th(_e demgdulated wave amphtude_and on its tem-
the difference onevs,—w,. The difference frequency compo- porallproﬁle is studied. Then, results on the influence of the
nent has a significantly lower frequency than bethandw,  transition from propagative to evanescent HF pump waves
if |y~ w,| < wy, w,. As the attenuatioffrom both absorption ©Nn the demodulated signal are presented. Finally, comparison
and scatteringincreases with the frequency, only the low Of this transition with the transition from ballistics to diffu-
frequency(LF) componeniw; - w, can propagate over a long S/0n In the HF pump wave propagation is discussed.
distance. Moreover, the directivity of this LF nonlinearly ra-

diated signal can be even higher than the directivity of the Il. THEORY

HF primary waveg25]. Modeling of the parametric antenna
operation in 3D disordered granular media has been recently
reported27] and applied for the interpretation of the experi- Due to the nonlinearityor anharmonicity of the lattice,
mental observationf28]. In this case, scattering due to con- the presence of an intense monochromatic HF wave at fre-
tact disorder as well as velocity dispersion and absorptiofluencyw creates a mean static nonlinear force. This phe-
have been mainly studied. nomenon takes place, for instance, in the presence of thermal

For the following analysis, it is important that the differ- phonons, leading to dilatation in solids. When the monochro-
ence frequency wave generated by mixing of two evanescetiatic HF carrier wave is slowly modulated in amplitude, the
pump waves can be propagative and can carry informatioRonlinear force is slowly accordingly modified. As a conse-
on the evanescent modes outside the region of their localiz&iuence, a LF wave is nonlinearly generated in the medium at
tion. the frequency of the modulation function.

It should be pointed out that we are going to analyze It is possible to use different amplitude modulation pro-
weakly nonlinear waves, where the quadratic nonlinearityfiles. Traditionally, the sinusoidal modulation of an harmonic
provides only a weak perturbation of the linear solution. Incarrier wave is described 4yl +m cogwyt) Jcogwt), where
this case, an effect such as nonlinear supratransmission in theis the modulation indexy,, is the modulation frequency,
forbidden band gap by means of nonlinear mo@s is not  andw is the carrier frequency. The spectrum of such signal
expected. However, energy transmission in the chain is posas three components, o - vy, andw+ oy, Another type of
sible even due to weak nonlinear effects if the interaction ofmodulation can be obtained due to the beating phenomenon
the evanescent modes leads to the excitation of the propaghetween two neighboring high frequenciesand w,. In this
tive modes. In the following, we show that the LF signal, case, the spectrum of the primary signal is composed only of
which might be experimentally transmitted in chains oftwo frequenciesv; andw,, and the amplitude modulation of
beads, is sensitive to the transition from propagative to evathe total signal is a consequence of the relative phase varia-
nescent modes in the primary wave transport. The transitiofion between individual signalgbeing alternately in phase
manifests itself by a strong decrease in the efficiency of the@nd out of phase
self-demodulation process. In a medium with a quadratic elastic nonlinearity in the

Numerical computations are performed for both singlestress-strain relationshigorresponding to the cubic term in
frequency and wideband demodulated signals in order to inthe potential energy—strain relationshighe superposition
clude realistic experimental conditions: single frequency sigprinciple is no longer applicable, and waves at different fre-
nals can be analyzed through a lock-in amplifier to accesguencies can interact. This is commonly denoted as the fre-
amplitude and phase, and wideband demodulated signals cguency mixing phenomenon.
be recorded in the temporal domain using an oscilloscope. For two emitted neighboring HF waves»; and

The influence of dispersion, absorption, and observatiom, (w;> w,), the energy conservation principle ensures that
distance on the demodulated signal are analyzed for singlgequenciesv;+w,, 2wy, 2w,, 0, andw;— w,, which is a LF
frequency and wideband demodulated signals. wave(if |w; - w,| < wq, ), are generated. As the attenuation

A. Principle of the parametric emitting antenna
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increases with increasing frequency, only the LF component bead number0 o 1-D chain of beads a
can propagate remotely and can be recorded. Thus, the pri-
mary emitted HF signal composed of and w, is nonlin-
early self-demodulated into a signal at the frequelfty
=W~ Wy

Another possible regime of LF wave generation by the
so-called parametric antenfi25] is the pulsed mode, where
a finite length HF primary wave packet is emitted first. For
simplicity of analytical development, and also to avoid the
side lobes in the spectra of primary signals, Gaussian modu- X

spring or contact of elastic constant o mass number n

«—>
. . ] . . a — || Equivalent 1-D latti
lation functions of the carrier wave are considered in the mass number 0 quivaien atice

following. The dependence of the mechanical displacement . )
in the primary wave on time and the associated spectrum can FIG. 1. Problem under consideration.
be modeled by

0 2 tween two beads, it is possible to model the 1D granular
U(t) = A cogwgt)e™#m, (1) chain as a chain of pointlike masses 7a’p/6 (Wherep is
the bead material densjtynteracting by nonlinear springs

~ 2 2 with a Hertzian force-displacement Igi4,15
U(w) = Ay, \/E(e—(w + wg)2Tl? +g (- wp)X mlz)), ) i
2 Fo+Fao (18] + 89*2, 4)

where 7, is the characteristic modulation time of the initial whereF, is the static applied force on the chaly,is a small
wave packet andw, the central frequency of this wave dynamic superimposed forcé, is the static deviation of the
packet. In this case, the frequency mixing takes place benterbead distance froma (a characteristic of the unloaded
tween all the frequency pairs of the Gaussian spectrum. Duehain withFy=0, F4=0) and &, (|84 <|&|) is the perturba-
to this, the solutiorJ&2tn, t, wo, 7,) (Wheren is the space tion due to the acoustic wave. Considering the dase Fy,
coordinatg for the demodulation of the Gaussian HF wavethe relation(4) can be expanded in a power series:
packet is related to the solutiddg(n,t,wq,{)) describing 3 3

the difference frequencf)=w, - w, excitation in the case of Fo+ Fax |80/%2+ =| 6|20 + =| 60| Y285+ -+ (5)
two waves mixing. The following integration should be per- 2 8

formed: The first nonlinear term of this expansion conta#jswhich

+o0 - is quadratic. This expansion of the force-strain relationship
Ugausfn,t,wo, T) = f Ug(nt, wp, 0)e ¥ mdQ),  (3) between two beads can be also derived from a potential
- energy—displacement relation for the whole chain or equiva-

where wy=w, and wg—Q=w, and Wheree‘ﬂzfrzn is propor- lent 1D lattice(Fig. 1y

tional to the frequency spectrum of the pump intensity enve- _ o B 2

lope. In the analysis section of this paper, the demodulated Ep=Epot 2;% [U(n) —U(n+1)]
displacement(n,t, wg, Q) will be expressed with the help

of a spectral transfer functio®(wg,(2). Consequently, any B B 3. ...

change in theG(wq,()) dependence of) will result in a ¥ 3|§n:[U(n) Uin+ DI+ ©)

modification of the shape of the demodulated temporal pro- )
file US2YS¥N, t, wg, 7). Here U(n) denotes the displacement of the méss bead

numbern. The cubic term in Eq(6) corresponds to the qua-
dratic nonlinearity of Eq(5), « is the linear elastic constant
B. Equation of motion in the quadratic approximation of a contact, ang3 is the nonlinear quadratic parameter of
The considered problem is the elastic wave propagation i€ same contact. From this nonlinear relation, it is possible
a semi-infinite 1D chain of identical spheres, as illustrated irf© deduce the following second order nonlinear equation of
Fig. 1. In the following, we will always consider the pro- Motion in discrete coordinates for each mass:
cesses at the time scales which are much longer than the #U(n)

acoustic wave travel time along a bead diaméter., less I =F(n)

than 10° s for glass beads of diametar2 mm). The phe-

nomena under investigation can be considered as quasistatic __ g

for the deformation of an individual bead; however, it does T aun)

not imply that the wavelength of the elastic wave in the chain

is large compared to the bead rada/® (because the sound =afU(n+1)-2U(n) +U(n-1)]

velocity in the chain is much lower than the sound velocity B

in the bead materigland the discrete character of the chain - E[U(n +1)-2U(n) +U(n-1)]

will be always considered. As the elastic deformations are

concentrated in the neighborhood of the contact location be- X[U(n+1)-U(n-1)]. (7)
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The solutions of this nonlinear equation of motion for theabove the critical frequency. The complete description of the
self-demodulation process will be found via the usual sucwave dispersion relation of the chain is given by the combi-
cessive approximation methgé5]. nation of Eq.(12) and Eq.(13).

C. Dispersion relation for the acoustic waves in the chain D. Solution for the self-demodulated wave

First, we recall the linear properties of such a system, in ) , ,
particular the dispersion relation. These linear properties of A parametric antenna emits low frequency signile-
elastic wave propagation in unidimensional lattices of iden/n0dulated signajsdue to the nonlinear rectification of pow-
tical masses and springs have been extensively stygiggd ~ ©rful amplitude-modulated high frequency wavgsimary
The dispersion relation is obtained from the following linear Waves that are first radiated in the medium. Thus, there ex-

equation of motion of the chaifthe linear part of Eq(7)]: ists ir_1 the region of no_nlinear excitation a large difference _in
2 amplitude between primary and demodulated waves. Using
U . o e, Lo
m (n) — o[U(n+1) - 20 +Un-1]=0. (8) the method of successive approximations, i.e., considering

that in the region of interaction, primary waves are much
] o ) ] . higher in amplitude than the nonlinearly demodulated waves,

Eigenmodes of the infinite chain are derived in the formthe equation of the first approximation for the HF primary
of wavesU(n)=A(w)e“ @ where w is the angular fre- waves is equivalent to E¢8), with the notationU=U,, to

quency,A(w) is the spectral amplitude, arkds the complex denote the displacement associated with the powerful pri-
wave number. Substituting the last formldfn) into Eq.(8),  Mary waves. To describe the medium excitation by two high

the following well-known dispersion relation is obtained: ~ reduency waves we use the following boundary condition
for the mass number O located at the boundary of the con-
4 ka
w?= —“sin2<—). ©)
m 2

sidered semi-infinite chai(Fig. 1):
Introducing the notatiom,=2ya/m for the cutoff frequency, U,(n=01) =RdA, (0)g1' + A, (0)€“4]. (14
i.e., the maximum frequency of propagating waves, knd

=qr/a for the maximum(real) wave number of propagating )
waves, it is possible to rewrite the relatie®) in the follow- ~ Here A, (0) andA,,(0) are the complex amplitudes of the

ot?

ing form: waves at frequencies; and w, at the boundarn=0. The
) solution of Eq.(8) satisfying this boundary condition and the
ofTk) _[o condition of radiation in the positive direction is
sir? = . (10)
2 ke We
Purely real solutions for the wave numbeexist only if U,(n,t) = R4A,, (0)eikledany o = (g)gwat-iklean
|w|< w,. In this case, the dispersion relation is ! 2 (15
k. t arcsir(ﬂ) (11
2 ke T We '

wherek(w) is the dispersion relation described by Ef2)
where the sign “+” corresponds to the waves propagating t@nd Eq.(13).

the right(positive direction and the sign “-” corresponds to Due to the beating phenomenon betwesnand w,, the

the waves propagating to the lgfiegative direction Con-  total signal is equivalent to an amplitude-modulated HF sig-
sidering only the waves propagating to the right, the follow-nal.

ing dispersion relation is obtained: The demodulated LF displacemey, is found with the

5 equation of the second order approximation

k= ;kcarcsir(ﬁ> for —w;.<ow< o, (12

We

mazuﬂz(n)
Jt

If |w|> w,, Eq.(10) has no purely real solution. It is nec- —a[Ug(n+1) - 2Uq(n) + Ug(n-1)]
essary to consider the wave numbernf the form k=k’

+ik” wherek’ and k” are real. Then, from Eq10), it is _ B

possible to derive an expression for the evanescent wave =- E[Uw(” +1)-2U,(n) +U,n-1)]

number of the form
X[U,(n+1)-U,(n-1)], (16)

2

k=kcsgr(w)—i%kcarcosV< ) for |w|> w.. (13

@ where the solution foU , is substituted in the right hand side
Note that Eq(13) describes the dispersion of the evanescenbf Eq. (7), while the contribution ofUg to the nonlinear
modes that are attenuated in the positive directian, with  terms is neglected. Retaining only the terms at frequency
increasingn). These are the modes for which the acousticQ)=w;— w,, it is possible to rewrite the right hand side of Eq.

waves propagating in the positive direction are transformed16) as
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wherek,=k(w,),k; =k(w,), andk, denotes the complex con-
jugate ofk,. The general solution of Eq16) is the sum of

the general solution of the homogeneous equation for waves
of frequency() propagating in the positive direction and of a
particular solution of the inhomogeneous equation

* . . * k +k*
2,8|m{Awl(O)sz(o)eth—l(kl—kz)an|:COS( 1 2a>

2
kl_k; ) . (kl_k; )
COE( > a:|SIn > al(,

Uqg(n,t, w1, 0,) = IM[Uqg(N, w4, wz)eim],

(17)

Qa(n,wl,wz) - Cle—ik(Q)an+ Cze—iAk an’

\ ky + K, ki—ky \| . (ki—ks
,BAwl(O)sz(O){cos( > a)—cos( > a)]sm( > a)

2
Za{sinz(%eo - %J
2 g

Here Ak=k*2—k1, andC; andC, are two constants. Assuming the absence of the LF motion at the boufmd=dy, we get
C,=-C,. The solution for the displacement in the demodulated wave takes the final form

. K+ K )_ {kl—k; )} _(kl—k; )
,BAwl(O)sz(O){co{ > al-co 2 a/l [sin —5 a

o]

W

Co= (18)

Ug(n,t, @y, 0p) = IM [1 - glk@-akamgorikan | (1)

Ill. ANALYSIS two excitation frequencies; and w,, is substituted in the
expression(20). Retaining only the terms with the difference

In this_ sc_a(_:tion, the th_eoreti(_:al resit9) is_ analyzed for frequencyQl=w,—- w4, the nonlinear forc€20) can be rewrit-
several limiting cases, |nclud|ng_propagatlve_pump waveg, e the expressiofil7). When w; tends tow, (Q=w
and evanescent pump waves. First, the nonlinear force re- ' ! 2 2

sponsible for the self-demodulation process is simplified._“’1 tends to 9, this force is simplified in the form
This.allows usto under;tand the basic propertie; of this para- g~ - 23ReA, (O)A; (0)e}g 2K (@lan
metric antenna operation. Second, the analysis of the dis- 1 2

placement wave demodulated from the propagative pump x{cogk’(w)a] — cosh|K'(w)|al}sini|K'(w)|a],

waves is done out of the region of the nonlinear force action. (21)
Section 1ll B 2 contains the qualitative analysis of the de-

modulated signal behavior inside the region of the nonlineawhere k' (w) =k'(w;) =k'(w,) and K'(w) =K"(w1) =K'(w,)
sources associated with propagative pump waves. Finallgre, respectively, the real and imaginary parts of the pump
the analysis of the displacement wave demodulated fromvave number for the high frequenay= w; = w,. In the low
evanescent pump waves is carried out. The following resultfrequency limit w<w, and for weak attenuatiotk”|/|k’|
allow us to explain the main physical features of the numeri<<1, a simpler form of the nonlinear force, responsible for
cal results presented in Sec. IV. the self-demodulation process, appears:

aB o’

N () o

This nonlinear force is proportional to the coefficient of
quadratic nonlinearitys, and is proportional to the inverse of
the characteristic attenuation length of the HF acoustic inten-
sity €,(w)=(2|K'(w)|)™%. This force decreases likesa"¢a(@)
with increasing distance.

If the phases of the pump waves a0 are equal, the
complex amplitude#,, (0) andA’;z(O) are real, and the no-

A. Analysis of the nonlinear force Re{Awl(O)AZ,Z(O)e‘“‘}e‘an’éa(“’). (22

According to Eq.(7), the expression of the nonlinear
force, quadratic in HF displacement, acting on the bgad
mas$ numbern is written

P () == 21U+ 1) - 20() + U(n - 1)

X[U(n+1)-Un-1)]. (20

The expressior{15) of the displacement of the bead
solution of the linear propagation equati@) in the case of

tation A;,A, can be used. Further, i;=A,=A, the term
AA; is equal toA? whereA is the excitation amplitude of
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both waves at frequenay; and w,. In this case, the nonlin- B . lcodk, - k*z) - cogk, + k*z)] _ .
ear force(22) varies like the squared pump wave amplitude Glwy, @) = Pya 07— sk — K. sin(ky — ky).
A? The low frequency regiméw < w,) described by Eq22) “« sirr(ky = k)
is identical to the regime of 1[plane-wave parametric an- (24)

tenna in homogeneous me . . . . .
g q2b] In the following, the notationw, =w, w,=w-Q with Q>0 is

used.
B. Analysis of the LF demodulated signal
The analysis of the demodulated displaceng(t) at the 1. Case of propagative pump waves
low frequency(Q, obtained in the form of Eq19), is done In the case of propagative pump waves, in contrast to the

first for propagative pump waves and second for evanesceg{;anescent ones for which a further exact development of the
pump waves. Outside the excitation region, i.e., when thgransfer functiorG is possible, it is necessary to consider that
term ") of Eq. (19) or Eq.(22) tends to Othe pump || <|o|.

waves are sufficiently attenuajedhe nonlinear force be- The relation 6<Q<w=1 is then satisfied. Taking into
comes negligible. The LF demodulated wave is then entirelyccount these equalities and inequalities, each term of the
generated, and propagates freely in the medium. In this casggnsfer function24) can be simplified.

the demodulated wavelg(n) is equal to a function Considering that the attenuation of the propagative waves
G(wy,wp)  multiplied  with - a phase term (1 s sufficiently weak to allow their propagation, i.e., the
—gki@anmiskan gik(@an~ e-ik(®an which describes its propa- modulus of the imaginary part of the wave numhie(w)|
gation in the dispersive medium. This functi@®(w;,w,) <1, and neglecting the dispersion of attenuat[tkt(w)|
represents a spectral transfer function describing the nonlin~ |K"(w—Q)|], the imaginary part of the diﬁeren(tkl—k*z) is

ear process of difference frequency excitation by the selfyritten as 2|k”(w)|. Using the Taylor expansion of the dis-
demodulation process. It gives the opportunity, together Withhersion  relationship at the first order, valid fde)|

the phase term, to find the amplitude and the phase of th& |(sk'/ gw)/ (k' 1 dw?)|, the real term(k]-K}) is approxi-

demodulated signal at frequenf= w;, - w, from the knowl- 5164 byk] —k, = Q(3k' / Jw)(w) < 1. In this case,
edge of the pump waves emitted at frequeneigsand w,.

Importantly, G(wg, ) =G(w,=wg, w,=wy—)) can also be . oK

applied for the analysis of the case when a HF wave packet is sin(k; — k) = O——(w) + 2i[K"(w)|, (25
used for the pump. Then, in accordance with &).and the Jw

definition of Ug(Nn,t, w1 =wg, w,=we— ) in EQ. (19), out of

the antenna bodyn> 1), cogk, —ky) =1 (26)
Uo(n> 1.t, 00, 7 at the first order in2(dk’/ dw)(w) and in [K"(w)|. With the
oo KQ) same approximations,
2
= Imj G(wo,Q)e‘QZTmexp{iQ(t - Tanﬂdﬂ

* — Jk’
cogk, +ky) = 1 - 20+ 20\1 - 0’Q—(w). (27)
Jw
(23
22 Substituting the simplified term®6) and(27) in the ex-
—O°7 i . : i
Consequently, the productn®(wy, )€™ m provides the pression of the transfer functia®4), and using(dk’/ dw)w
spectrum of the demodulated wave in the accompanying sys_-cél(w):(l-wZ)—UZ, wherec,(w) denotes the group veloc-
tem of coordinates when> 1. In other words, the spectrum jty "3 new expression for the transfer functiGnis obtained:
of the demodulated signal might be obtained by multiplica-
tion of the spectrum of the intensity envelope of the HF wave B
2 ~
e by the functionG(wg,{2). This is the reason to call Glw,Q) =
G(wg,Q) the spectral transfer function. In order to under-

stand the LF generation dynamics in the region of the non- Using the notatiorf,(w)=1/2k"(w)| for the attenuation

linear sources and particularly the role of the velocity disperlength of the acoustic pump intensity, and considering that
sion, the whole phase terrfil —ek(®an-iskan g-iki@anyjj| for a qualitative analysis of the behavior Gf 1 +cy(w) is of

also be analyzed in the following. the same order as(d<cy(w)<1), the expression28) is
For the analysis of the self-demodulation process, th&implified to the form

pump wave frequencies and the associated wave numbers 8 1

are respectively normalized to the cutoff frequergyand to _Pa2 2 =

the factor(2/m)k.. The main advantage of such a normaliza- Glw, ) aA ™ lal0) p+i (29)

tion is that both the phase velocity, and the group velocity

¢ are equal to 1 when the frequenaytends to 0. where p=p’[1-Cy(w)]={a(w)k(Q)[cy(Q)/cy(w)][1-Cylw)]
When these normalizations are done, the transfer functiois @ nondimensional parameter. With< w< 1, the relation

of the self-demodulation process takes the following generat,(Q) =c40)=1 is satisfied, and the parametercan be

form: rewritten as

B po o SMcy(w) + 2i|K(w)
a - {[Q/cy(w)]+ 2K (w)}2- 0

(28)
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FIG. 2. Demodulated displacement amplitude as a function of
the observation distandexpressed in number of beadgsfor four
different values of the nondimensional paramegiefFor compari-
son, the amplitude of the demodulated signal from evanescent pu
waves is plotted as a dashed line.

FIG. 3. Evolution of the demodulated temporal velocity profile
with the observation distance in two limiting caspsx1 andp
m%l.

Second limiting casaVhenp>1, this spatial separation
is large compared to the wavelengtk()) of the demodu-

c,(Q) —¢
p= €a(cu)k(Q)‘/’(T)()9@. (30) lated wave, and the transfer function takes the following
g\@ form:

In this expression{,(w)/cy(w) represents the time taken by y—
the HF pump wave packet to travel along its characteristic Glw,Q) ~ EAz oVl-w
attenuation region. The factdf (w)/cy(w)][C,4(2)—C4(w)] ' a Q1l-V1-0d
represents the characteristic spatial separation between the
HF pump wave packet and the demodulated signal at thgpere ¢ (0)=\1-w2 This development is valid only for
scalet,(w), i.e., at the limit of the nonlinear interaction re- (1-w) ;Q, which ensures the validity of the Taylor devel-
gion. So the parametgris proportional to this distance mea- onment of the dispersion relation carried out previously with
sured in LF acoustic wavelengths. - _ . the small parametd®. It is already possible to say that in the
First limiting case.Whenp<1, this spatial separation is ,¢e of an excitation with a HF pump wave padie con-
small compared to the wavelengti(2) of the demodulated  gjjereq in Eq(3)], the demodulated temporal profile will be
signal, and the transfer function takes the following form: integrated due to the presence of the fa€dn the denomi-
nator of expressio(B32). Two limiting caseggiving the same
Glw,Q) ~ - i§A2w2€a(w). (31  form for G) can be identified in the expressi@8p), the case
a of small velocity dispersion where <1 [in this casecy(w)
In this case, the amplitude variation of the demodulated sig-_r?“’(m_.l] and the case of str.ongh V(T-qutyhdlspersmn
nal as a function of the pump frequency is controlled by the"NEr€ @ IS near 1[cy(w)<cy(@)] in the limit, however,
pump wave attenuatiofparametero®(,(w)]. The velocity where 1-w> 0. .
dispersion does not play an important role, either due to the Whenw<1, the functionG has the form
p play p )
small antenna length, or due to the small difference between
the velocitiescy(w) andc,(€2), in producing a sufficient spa- Gl(w,Q) ~ /_gAzl_ (33)
tial separation between the HF wave packet and the LF de- a
modulated signal at the end of the interaction region. In this
limiting case, the functiors being independent of the vari- The conditionsp>1 and w<<1 mean that the length scale
able (), the demodulated displacement temporal prafite  where nonlinear interaction takes pla¢g(w), is large com-
the case of the demodulation of a wave pagkemains pared to the demodulated signal wavelenytl), i.e., al-
qualitatively unchanged compared to the initial modulationthough the velocity difference is small, the interaction region
function of the pump signdlUq(n,t, o, Q)| is independent is sufficiently long for the spatial separation between HF
of Q) in Eq. (3)]. nonlinear sources and the demodulated wave to be signifi-
For an attenuation length of the forffj(w) ~1/w, as is  cant. In this case, the functidd(w, () is independent of the
considered later, the transfer functi@tw,(2) increases lin-  pump frequency», meaning that out of the antenna body, the
early with the pump frequencw. This first limiting case demodulated signal amplitude does not depen@on
corresponds to thp=0.15 curve in Fig. 2 of the numerical When o tends to 1(still with 1-w>Q), the functionG
results section, and to curye=0.13 of Fig. 3. has the following form:

(32)
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FIG. 4. Transition in the velocity profile, demodulated from
propagative pump waves, associated with the sound dispersion. T
parametep is, from the darkest to the lightest line, 0.16, 0.73, 1.6,
2.76, 6.6, 12.2, respectivel;=2x 1077, andQ=1.7x 1073,

B

J”l - 2
G(w,Q) == 2J.
[

(34)

The velocity difference betweery(w) andc,((2) is signifi-

cant, which ensures a strong influence of the velocity disper-

sion on the demodulated signal. The factdr-w? that ap-
pears in the denominator of expressi(8¥) describes the
decrease of the demodulated wave amplitude wiheap-
proaches the cutoff frequency 1.

In these two last limiting cases, the dependend@ oh ()

Q

PHYSICAL REVIEW E70, 056603(2004

J'E"‘zl K’
oy~ Do LA WL_q
a 02-[\20+ 2K (w)[]

As <1, the term? in the denominator of this expression
is always negligible compared tQ. The notation X’(w)|
=1/€4(w) is reintroduced ané is simplified:

1
Glw,Q) = - EAZ#- (39
a 20+ 2i|K'(w)]
By introducing the nondimensional paramete?
=JQ/2¢,(w), the functionG is rewritten as
B L
G(w,) = 2aA { () e (39

When the condition 1w> ) holds, which was the case in
ge previous subsection, the characteristic pump frequency is
w1+ ) 2=(w+w—Q)/2=w whenQ < w. Inversely, in the
present analysis, the condition b<() implies that the
characteristic pump frequency is no(w;+ w,)/2=(w+w
-0)/2=[2+2(1+w)-Q]/2=1-Q/2. In this limiting case
(1-w<(Q), the parametep used for the analysis of the pre-
vious case 1w>() can be rewritten as

QO cy(Q) - cylw)
Cy(Q)) Cy(w)

_e
Cy(1-Q/2)
(40)

with c4(Q)=1 and c4(w)=c4(1-Q/2)—0. Finally, as

Cq(1-Q/2)=1-(1 -0/2)?= VQ, the previous parameter

p= ga(w) = €a(w)

is identical; the velocity dispersion influence is significantS equivalent to the new one. The physical interpretations
and manifests itself by a temporal integration of the demodu®f these parameters are thus identical when taking into ac-

lated LF signal. This is illustrated in Sec. IV, by the profile
n=7000,p=10 in Fig. 3. Transition between the limiting
caseypp<<1 andp>1 is shown in Fig. 4.

Limiting casew tends to 1 The interest in analyzing this
limiting case, where the conditic} > 1 -w is satisfied w is
in the vicinity of the cutoff frequency )l is to check the

correspondence between the high frequency limit of the
propagative zone and the low frequency limit of the evanes-

cent zong(case studied later in Sec. Il B.3

When Q> 1-w, the Taylor expansion of the terkj—k;
cannot be done with the help of the small paramétebut
should be derived with the 1o small parameter:

K-k =-\20+\2(1-w)=-\20, (35

count the difference in the characteristic frequencies of HF
waves in the considered situations.

When P<1, the phase mismatch between the nonlinear
sources and the demodulated signal at the limit of the inter-
action region is weak, and the transfer function takes the
form

G(w,Q) = - iﬁAzea(w). (41)
2a

This function is proportional td,(w) and does not depend

on Q). This limiting case corresponds to the linpt<1,1

—w>(), the expression of Eq31).

When P> 1, the phase mismatch between the nonlinear
sources and the demodulated signal at the limit of the inter-

and the following terms, which appear in the general form ofaction region is large, and the transfer function has the form

the transfer functiori24), have the forms:

sin(ky - Ky) = = V20 - 2i[K"(w)

* l A~ .
cogk, —ky) =1 - E[szﬂ + 2i|K"(w)|12,

cogk; +ky) =—1+Q. (36)

These expression86) are substituted in Eq24) to ob-
tain a new expression for the transfer functiGn

1
EAZ,_—.

G(w,Q) =- 2’
\’

(42)

In this case, the factor 1) ensures the partial integration
(of the order of 1/2 of a temporal profile, demodulated from
a pump wave packdia consequence of the substitution of
this term in Eq.(3)]. From the comparison of E¢34) and
Eqg. (42) it can be concluded that whéfor the fixed() < w)
the frequencyw approaches 1, the integration of the profile
transforms into partial integration.
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2. Behavior in the region of the nonlinear sources

The analysis of the resull9) in the region of the nonlin-
ear sources, i.e., whedkamidkan js not small compared to
1, is justified for propagative pump waves. For evanescent
pump waves, attenuated along a distance of several beads
the source region is so limited in space that the observation is

too difficult to be realized in this region. The resyl) is
the product of the phase terifl —gk(®)an-iskan gQt-ik(an
and of the transfer functiorG(w,{)) studied earlier for

propagative pump waves. Thus, only the phase term should

be analyzed. The terd®t7k(®an describes the propagation

of the demodulated LF wave in the chain. The term 1
—gk@ar-idkan 5 thys to be analyzed. It is controlled by the
behavior of the following phas®:

® =[Ak-k(Q)]an. (43)

In the limit where the attenuation of the pump waves is
weak, the modulus of(Vamiskan s close to 1. In the fol-

lowing analysis, the imaginary part of the propagative waveg ~_5 17
number is neglected and the wave numbers and frequencigs, brightes’t to the black line®@ =1.7 104:8.3 104:3.3 103

are normalizedrespectively to(2/m)k. and w.]. Moreover
Ak=k'(w1) =k’ (w,) can be simplified ik’ (w;=w+/2) and
k'(w,=w—Q/2) are expanded in Taylor serigsnder the
condition 1-w>). In this case Ak={(/c4(w) up to the
third order in(}.

The wave numberk(()) is equal to/c,(Q), where
c,(Q2) is the phase velocity at low frequen€y. This phase
velocity is obtained from the dispersion relati@®), having
the formc,(Q)=Q/arcsi))=1 for 2 <1. The group ve-

Demodulated amplitude (arb. units)

0.4 0.6 0.8 1 12

Normalized pump frequency (w/w)

0.2 1.4

FIG. 5. Transition between the generation of the demodulated
signal by propagative pump waves and by evanescent pump waves.
The observation distance is fixauk5000, the attenuation constant
and demodulated frequencies are respectively from
and
8.3 103

with the asynchronism between nonlinear sources and the
demodulated wave. This behavior is clearly depicted as a
function of the propagation distance in Fig. 2 and as a func-
tion of the pump frequency in Fig. 5.

3. Case of evanescent pump waves

The pump waves become evanescent when the pump fre-

locity at high frequency is also derived from the dispersionquencyw is higher than the cutoff frequency of the granular

relation (12) and is equal tocg(w)=c¢(0)\s“1—w2. Conse-
quently, the phasé3) to be analyzed can be rewritten with
normalized quantities:
n.
Cg(“’))

If this phase is equal to -2 or —(2¢+1)m with € € N the
term 1-gk®an-iskan of the result(19) has a minimum or a

@:—29(1— (44)

maximum, respectively. The pump frequencies for which &

minimum is obtained satisfy the following relation:
(45)
The distances for which a minimum is obtained are
{
n=[1-(1-w?) M2, (46)
Q
If the pump wave absorption is taken into account, the ter

1-gkiamizkan of Eg. (19) has minima(or maxima less
pronounced because the modulugl§fYamiskanis ng jonger

equal to 1 but becomes smaller. Its behavior depends on the

difference between the phase velocity of the LF demodulate
wave c,4(0)=1 and the HF group velocity of the nonlinear
sourcescy(w). In the region of existence of the nonlinear

chainw. They are localized near the high frequency emitter.
Consequently, the demodulated signal is almost always reg-
istered out of the region of nonlinear interactigthe modu-
lus of the terme™2ka" of Eq. (19) is much less than]l

For the analysis of the demodulation of evanescent pump
waves, it is possible to start from the general expression of
the transfer functioii24). Frequencies and wave numbers are
still normalized, respectively, ta, and X /. Considering
w,=w and w;=w+ with >0, and using the dispersion
relation Eq.(13), the transfer functiori24) can be rewritten
as a function ofw and Q:

G(w,Q)
__ iEAzw(w + Q)[w\s"m +w+Q) V,T_l]
0%+ [w\f"(w + Q)2 -1+(w+ Q)\;wz — 1J2
(47)

o

Taking into account the fact th& < w, and for pump fre-

nhuencies sufficiently far from the cutoff frequenéy—1

>()), this expression becomes

B

(¢4

w
T

A2
Vo?-1

d Glw, ) =—i (48)

It is interesting to note that in this case, whenbecomes

sources, the occurrence of a succession of minima anirge compared to the cutoff frequency 1, the modulus
maxima in the amplitude of the demodulated LF wave is thugG(w, Q)| ~ BA%/ a2 is independent of the pump frequensy
a manifestation of an effect of velocity dispersion associatednd independent of the difference frequerityThe nonlin-
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ear sources are Iocalizgd on the very first beads due to_ their SIF(AK) = - sintf[2K"(w)|] ~ K@l 2 (52

evanescent nature, which means that they can be considered

(for w?>> 1) as surface sources for the LF demodulated wavestrongly dominates in the resonant denominator and the con-

As a consequence, no dispersion effect can influence the préitions for the signal accumulation rapidly diminish with in-

cess of self-demodulation which ensures that no frequencgreasingow.

dependence is observed. However, in accordance with E¢G0), not only the accu-
Inversely, still considering tha2 < w, but for pump fre- mulation of the signal but also the magnitude of the forces

quencies in the vicinity of the cutoff frequen¢w—1<(),  should be compared in these two limiting cases. The nonlin-

the transfer function is ear force acting on the bead numbeis equal to the differ-
P 5 ence of the forces applied from different sides. From (#y.
. vV
Glo ) = -1 A, 49 Fu) ~[Un+ 1) -UmF-[Uym -U,n-DF.
(53

The limit (48) shows that in the case of the demodulation
of a pump wave packet, the demodulated temporal displace- In the low frequency limit(w<1), each of the strains
ment will exhibit a profile identical to the intensity modula- [U,(n+1)-U,(n)]/a and[U,(n)-U,(n-1)]/a is inversely
tion function of this HF wave packet, due to the absence ofroportional to the HF acoustic wavelength, that is, propor-
dependence of). In contrast, the limi{49) ensures that the tional tow. The differences between the forces applied to the
temporal profile of the demodulated displacement is partiallyead from different sides are controlled by HF wave absorp-
integrated due to the presence of the talfhin the denomi- tion or by the difference in the high frequencies, that is, by
nator. Q. As a result, in the limiw<1,

For the analysis of the demodulated signal from evanes- 5 "
cent pump waves, the conventian=w and w; = w+Q with Fi ~ omaxk(Q),k()}.
Q>0 has been used, but for the analysis of the demodulated In the case of a high quality antenrg(w)>\(Q) [25],
signal from propagative pump waves it is the conventiongnd
w1=w andw,=w-Q with >0 which has been used. Com- 5
parison of the resulf49) obtained in the evanescent limit Fae ~ ok(€). (54)
w—1,0>1 and of the resul{42) obtained in the propaga-
tive limit w— 1,w<1, should thus be carried out by chang- Consequently, from EGS0), Eq. (51) and Eq.(54),
ing in one of the two caseQ by —(). This produces a factor Ug ~ 04(w), (55)
=i in the transfer function where(}-is introduceddue to the
term (€2)~Y2 which occurs in these limiting casesand the
two results agree well. Continuity &(w,{)) across the tran-
sition fromw <1 to w>1 is also confirmed by the numerical
results taking into account the total expressid8) (see Fig.
5).

which is the classical result for the 1D parametric antenna in
a homogeneous mediuf2s].

In the limit > 1, the situation is different. The fordg_
in Eq. (53 is controlled by the displacement of the single
lowest number bead. Formally,

— 2 HK' (@ 4
4. General qualitative analysis of the dependence Fau(n=0,0,Q) ~-Uj(-1) ~ € Kol ~ @, (56)

of the demodulated signal omw and €2 Thus, the localization of the force leading to the dependence

The demodulated displacement is proportional in the gen=w* of the denominator is completely compensated by the
eral case to increase of force amplitudé~w?) described by Eq(56).
Fu (N=0.0.0) Consequently, in the regime>1,U, depends neither of
Ug ~ ’\“-2— (500  nor onw.

Q2 - sirf(AK) This qualitative analysis confirms the result obtained ear-
whereFy,_ is the nonlinear force acting in the demodulation €7 On the basis of the asymptotic expansions. In the inter-
process(the time dependence® is omitted. The denomi- Mediate frequency range~ 1 (or, in general, when the non-
nator of “resonant” type is common for forced processes. Ifflimensional parametepsand P are not smaj, the influence
the limiting casew<1 (the nondimensional parameter o_f the wave velocity d|sper5|on_ on the spectral transfer func-
<1), characterized by a negligible role of the dispersion ef-ion Glwo,€2) should be taken into account.
fects, the denominator describes synchronism effects and the
net effect is proportional to the length of their accumulation,

i.e., proportional to the length of the antenfidw): IV. NUMERICAL TREATMENT AND RESULTS
1 As previously, frequencies and wave numbers are normal-
= sif(ak) Ca(0)NQ). (51)  ized for numerical calculus and in the presentation of the

results. The quantities that can be varied experimentally such
In contrast, in the opposite limiting case> 1, there are as the pump frequency, the modulation frequenc§), or
no effects of the signal accumulation just because the arthe observation distanae(number of beadsare used in the
tenna is reduced to a sing{éirst) nonlinear spring near the following to vary the nondimensional parameters of the
surface. In this limit, problemp and P, and to go from one previously analyzed
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limiting case to another. The attenuation of the propagative 2. Case of a Gaussian pump wave packet
pump waves is taken into account through an imaginary part
of the wave number of the fordk”(w)|=Cw whereC is a
constant. This frequency dependence of the attenuation h . . . .
been experimentally observed in three-dimensional granula aussian tempo_ral fung:t@rﬁhe manifestation qf thg effec.ts
media[13]. However, it is possible to introduce in this for- previously mentioned is different. The velocity dispersion

malism any kind of function of the frequency to describe thed.Oes not produce minima and_maX|ma n the demodula’_ced
displacement amplitude, but gives an amplitude saturation

attenuation, including, for instance, nonmonotonic functions S : o ,
for relaxation phenomena. and a.W|d_en|n.g of th(_e temporal profile of this S|gnal._Th|s
behavior is directly linked to the fact that the nonlinear
sources propagate more slowly than the demodulated signal
A. Influence of the observation distance they generatécy(w) <c4({2)]. This behavior is illustrated on
. . Fig. 3, where the temporal profiles of the acoustic particle
In. order to understgnd .th_e _d|ﬁereqt regimes of the parai/elocity are plotted for several distances and for two limiting
metric antenna operation, it is interesting to plot the demodu-Casesp<1 andp> 1. The analysis has been carried out for

lated signal amplitude as a function of the observation disy, o 406ystic particle displacement but velocity temporal pro-

tance, especially in the region of existence of the nonlineagyq a6 piotted here and in the following. The spectral trans-
sources. formation from the particle displacement to the particle ve-
locity is simply done by am{) multiplication.
1. Case of two pump frequencies The widening of the Gaussian temporal profile of dis-
placement corresponds to an integration of this profile, which
ensures also an integration of the demodulated velocity pro-

demodulated signal amplitude is plotted as a function of the}”e’ i.e., the transition from the first derivative of a Gaussian

distance for different values of the nondimensional param-unCtion to the d_erivative of Z€ro order. This _behavior has
eterp, on Fig. 2. In this simulationQ=8x 1074, and C been predicted in Sec. Il B 1, in the analysis of the two

=2X107. As O <w,,w,, it is possible to consider for the limiting case_sp<1, Eq.(31), andp> 1, Eqs.(33) and(34),
discussion that, = w,= w. In Fig. 2, four curves are plotted for r[])rogagatlye pump])( waves. The occuc;rence of the tﬁr:m

in continuous lines and correspond to four values of the non:-?e:ng du?gt%rgI?eartr?p:oorale)p()?cryzlsjli?\(t%?r:t?on(3irA1r) t?\gsg;(;sei €
dimensional parametep=0.15,0.65,1.85,13 obtained by - a 3 A '
varying the pump frequency respectively, as-8x 102,3 ~ Forp>1(@=0.970=1.7x10",C=5x10") in Fig. 3, the

X 10°1,6Xx 10°1,0.98. For these pump frequencies the at_mtegratlo.n of'the velocity profile takes place between the
tenuation length of the pump intensitgharacteristic length OPservation distances=200 andn=7000. Moreover, due to

of the parametric antenpas, respectively, in terms of the the asynchronism phenomenon, a saturation of the demodu-
number of beads, €,(w)/a=3.2x10%0.8x10%0.4 lated signal amplitude is observed starting from distances of

% 10%.0.23% 10*. The observation of the demodulated Signa'several hundred beads. This is not the case when the velocity
is thus mainly realized in the region of nonlinear interactiond'Sp.er,Slon effects on the .pargmetnc antenna operathn are
between the pump waves. negligible(p<1,w=0.083 in Fig. 3. The demodulated sig-

For p<1, the demodulated amplitude is proportional to nal amplitude in the latter case is not saturated in the range
the distancé'l_eik(man-mkan| = |1-€f =|1-1—¢n| = |én| (in of the presented observation distances and the temporal pro-
the limit |n<1) (see the curvep=0.15 of Fig. 3. For p file remains unchanged, proportional to the first derivative of

>1, the same dependence is observed along a distance BfGaussian function.
several hundred beads, but a saturation phenomenon appears.
The demodulated amplitude reaches then a maximum value
and begins to oscillate between local minima and maxima
(see the curvep=13 of Fig. 2. This behavior has been dis-  Without changing the observation distance of the de-
cussed in Sec. Il B 2, and is associated with the velocitynodulated signal, it is, however, possible to observe a tran-
difference between the nonlinear sources that propagate aition in the shape of the demodulated velocity temporal pro-
the velocity Oscy(w)<1 and the demodulated wave that file by changing such parameters of the pump signal as the
propagates at the velocity,(2) = 1. In accordance with Eq. central frequency of the wave packet or the characteristic
(46) obtained from the analysis of the phase term of thelime of modulation of this packet,~ 1/Q. In Fig. 4, such a
demodulated displacemenit9), the first minimum for¢= transition is presented, for which the nondimensional param-
-1,0=8x%10" andw=0.98 should appear at the distance eter p is varied fromp=0.16 top=12.2 by increasing the
n=1100, and the following minima at multiple integer dis- carrier frequency of the Gaussian wave packet between
tances. This behavior is well observed fo= 13 in Fig. 2. =0.083 andw=0.97. These limiting cases correspond to the
For comparison, the demodulated signal amplitude fronexpressiong31) and(32) of the transfer functiol(w, ) of
evanescent pump wavée=1.083 is plotted as a dashed the self-demodulation process, respectively. Fqr
line on the same Fig. 2. This amplitude is constant, starting<1, G(w,Q) ~w?*(,(w), but for p>1, G(w,Q)
from several beads, i.e., out of the region of existence of the- wzcg(w)lﬂ[l—cg(w)], which ensure an integration of the
pump waves. demodulated signal profile.

In the case of the demodulation of a pump wave packet
ith a Gaussian spectruiior equivalently modulated by a

In the case of two neighboring pump frequencigsand
w, (the only demodulated frequency is thQ1s€ w4, w,), the

B. Transition associated with the velocity dispersion
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At the transition(integration of the velocity profilg the
nondimensional parametgris of the order of 1, which al- 08¢
lows us to estimate the unknown parametég(w) 0.61

o
)

*Signal-
amplitude :
{arb. units‘)‘

L] i

=Cy4(w)/k(Q)[1-c4(w)], because other variablés,()) are 0.4r !
controlled. o2t - re
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C. Transition propagative — evanescent pump waves
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When the pump waves are no longer propagative but are
localized in space near the HF emitter, the cumulative phe-
nomena associated with the co-propagation of HF pump
waves and LF demodulated waves dispppears. This singular
modification in the pump wave transport might be a source
of information about the medium, and particularly about its
microstructure.
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1. Case of two pump frequencies

The complete formula Eq(19) is used to plot the de-
modulated signal amplitude as a function of the pump fre-
quency in Fig. 5. The observation distance is fixednto
=5000, the attenuation constantGs=5x 10", and the de- 0.4k
modulated frequencies are equal =1.7x10"%, 8.3 02}
X104, 3.3x10°3, 8.3x 1073, For these four cases, a strong
fall of the parametric antenna efficiency is observed around
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the cutoff frequencyw=1 (betweenw=0.9 andw=1.1), typi- ::i_

cally from one to three orders of magnitude dependinglon !

When 0)=8.3x 1073, an amplitude saturation effect due to oer

the phase mismatch between the nonlinear sources and the ~ ~*°[ ; 5 :

demodulated wave occurs in the propagative zone1). ) ] 0 1 2 3

This saturation effect is weaker for lower demodulated fre- Normalized time (t /Tm)

quenciex). As a consequence, the efficiency fall, between,

for instance,w=0.9 andw=1.1 is higher forQ=1.7x 10 FIG. 6. Transition between the generation of the demodulated
(more than three orders of magnitydthan for 2=8.3  signal by propagative pump waves and by evanescent pump waves
X 1072 (less than two orders of magnitude (out of the interaction regignfor three values of the nondimen-

Similarly to the case>1 of Fig. 2, a pattern of minima sional parametep. To give an estimation of the amplitude fall at
and maxima is observed for the highest valueQadh Fig. 5.  the transition, the demodulated amplitudes are presented in the
The same phenomenon is responsible for this behavior, i.einsets.
the velocity dispersion, which ensures an asynchronism be- )
tween the nonlinear sources and the demodulated wave, bEVEEN Propagative pump waves and evanescent pump waves.
ing alternately in phase and out of phase. The formula, Eq'.” F|g. 6, three transitions are plotted for three values of the
(45), allows us to find the minima, which gives, for ~nondimensional parameter p>1, p=1, andp<1. Three
=5000 and) =8.3x 1073, a first minimum atw=0.37. This  ca&rrier frequencies are used for each transitio#,0.67 and
D.83(propagative and w=1.083(evanescent The value of
the attenuation constant remains unchan@e]106.

To vary the parametgp from p<1 to p>1, the charac-
teristic modulation time of the pump wave packet is de-
creased fromr,,=8.3X 1072 to 7,,=3.3X 10°°.

When p>1, the modification of the profile associated
with the transition between propagative and evanescent
pump waves is represented in Figap As the effects of

Concerning the signal profile demodulated from a Gaussvelocity dispersion in the propagative zone are significant
ian wave packet, its form can evolve in the transition be{p> 1, limiting case(32)], the particle velocity profile is in-

result is in agreement with the corresponding curve, th
black one in Fig. 5.

At the transition,w=1 andk(w)=2/a, which gives infor-
mation on parameters like the contact stiffnesghe static
stress applied on the chain, and the diameter of the beeads

2. Case of a Gaussian pump wave packet
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tegrated and is proportional to a Gaussian function. The paeounts for the evanescent modes at high frequencies. By an
ticle velocity profile demodulated from evanescent pumpintegration of the analytically obtained LF displacement in
waves is proportional to the first derivative of a Gaussiarthe case of two primary frequencies, we have considered the
when the carrier frequency is sufficiently greater than theself-demodulation of Gaussian wave packets. The dynamics
cutoff frequency[see the limiting casé48)]. Thus, the tran- of the LF demodulated wave amplitude is studied as a func-
sition from the propagative zone to the evanescent one manfion of the primary wave frequency, the distance of propaga-
fests itself in this case by a derivation of the demodulatedion, and the absorption. The numerical results of Sec. IV
temporal profile. The associated inset shows a fall of at leagvere found to be in agreement with the analytical predictions
one order of magnitude in the efficiency of the parametricof Sec. Il not only qualitatively but also quantitativelguc-
antenna. cession of minima and maxima in the demodulated ampli-
Whenp=1, the integration of the LF profile for propaga- tude as a function of pump wave frequency, for instance
tive pump waves due to the velocity dispersion is partial. ThéMloreover, the theoretical analysis has shown that only a few
transition in the shape of the profile still exists but is lessparametergp, P, etc) are necessary to discriminate the dif-
clear than in the casp>1. However, the signal being less ferent regimes of the parametric antenna operation in a
saturated in amplitude due to a weaker influence of the vegranular chain.
locity dispersion, the demodulated signal amplitude fall is The transition from propagative to evanescent primary
greater than in the cage> 1 [see the inset of Fig.(B)]. waves manifests itself in each case by a strong decrease in
Finally, whenp< 1, no transition in the shape of the de- the demodulated signal amplitude. In some particular cases,
modulated profile is observed. For both propagative and evdhe shape of the temporal profile is also differentiafteidy.
nescent pump waves, the velocity profile is proportional to6(a) insef when the primary waves become evanescent.
the first derivative of a Gaussian functi¢Rig. 6c)]. It is, Velocity dispersion, through the asynchronism between
however, in this limiting case that the efficiency of the para-HF nonlinear sources and LF demodulated waves, is saturat-
metric antenna exhibits the deepest fall in amplitude betweeing the self-demodulation process. Its manifestation is a pat-
w=0.83 (propagative and o =1.083 (evanescent as is il-  tern of maxima and minima in the amplitude dynamics of the
lustrated in the inset of Fig.(6). It has to be noticed that in LF demodulated wave in the case of two primary frequen-
this limiting case, the amplitude of the demodulated signakies, or a saturation in amplitude and a pulse widening in the
increases with the pump frequency practically all along thecase of wide-frequency-band excitations.
propagative zone, which is not the casefer 1, where over It should be noted that although the transition from bal-
a non-negligible region the transfer functid@®w,) de- listics to diffusion, taking place with increasing frequency of
creases as a function of the pump frequency. In the evane#e acoustic carrier wave in 3D irregular granular packing,
cent zone, the demodulated amplitude decreases as a furlgads to stronger localization of the acoustic energy near the
tion of the pump frequency. emitter, similarly to the transition from propagative to eva-
In conclusion, the transition between propagative and evaReéscent mode transport in the 1D periodic granular chain
nescent pump waves manifests itself, for 1, by a deriva-  studied above, its influence on the demodulation process is
tion of the demodulated profile and an efficiency fall of onepredicted to be quite different. The transition from propaga-
order of magnitude. Fop<1, transformation of the profile tive to evanescent pump waves manifests itself by a deriva-

is not predicted but there is a fall of efficiency of at least twotion of the demodulated wave pulse profitbis derivative
orders of magnitude. can be partial or even absent in some cgsehkile the tran-

sition from ballistic to diffusion pump waves manifests itself
by an integration of the demodulated pulse prdfités inte-
gration can be partial or even absent in some cf2€s.

We have developed a theoretical model for the nonlinear
self-demodulation process in a granular chain. This model ACKNOWLEDGMENT
takes into account the precise dispersion relation associated This work was supported by DGA Contract No.
with the discrete nature of the lattice, and, in particular, ac00.34.026.
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